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Résumé

Dans cette thèse, nous considérons le problème de la classification supervisée sur un flux de
données sujets à des changements de concepts. Apprendre à partir de ces flux de données
représente un challenge immense. En effet, un algorithme d’apprentissage doit être capable
d’apprendre à partir d’une série d’observations et doit pouvoir obtenir des bonnes perfor-
mances de prédiction sous les contraintes d’un temps de calcul et d’une mémoire ordinateur
limités. Un autre challenge est le fait que la distribution de probabilité cachée (le concept)
qui génère les observations, puisse changer avec le temps (changement de concept). Un algo-
rithme d’apprentissage doit donc avoir la flexibilité de pouvoir s’adapter à ces changements de
distributions.

Afin de surmonter ces difficultés, nous pensons qu’un algorithme d’apprentissage doit com-
biner plusieurs caractéristiques. Il doit apprendre en ligne, ne pas faire d’hypothèses sur le
concept ou sur la nature des changements de concepts et doit être autorisé à s’abstenir de
prédire lorsque c’est nécessaire.

Les algorithmes en ligne sont un choix évident pour traiter les flux de données. De par leur
structure, ils sont capables de continuellement affiner le modèle appris à l’aide des dernières
observations reçues.

La structure instance based a des propriétés qui la rende particulièrement adaptée pour
traiter le problème des flux de données sujet à des changements de concept. En effet, ces
algorithmes font très peu d’hypothèses sur la nature du concept qu’ils essaient d’apprendre ce
qui leur donne une flexibilité qui les rend capable d’apprendre un vaste éventail de concepts.
Une autre force est que stocker certaines des observations passées dans la mémoire peux amener
de précieuses meta-informations qui pourront être utilisées par la suite par l’algorithme. Pour
finir, cette structure permet de baser la mise à jour du modèle sur des preuves concrètes
d’obsolescence et de fait, permet de s’adapter aux changements de concept sans avoir besoin
de les détecter explicitement.

Enfin, dans cette thèse, nous mettons en valeur l’importance de permettre à un algorithme
d’apprentissage de s’abstenir de prédire lorsque c’est nécessaire. En effet, les changements
de concepts peuvent être la source de beaucoup d’incertitudes et, parfois, l’algorithme peux
ne pas avoir suffisamment d’informations pour donner une prédiction fiable. Dans ces cas-là,
plutôt que d’essayer de donner une prédiction à n’importe quel prix, nous pensons qu’une
meilleure stratégie consiste à déconnecter automatiquement l’algorithme en lui permettant de
s’abstenir de prédire.
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Summary

In this thesis, we investigate the problem of supervised classification on a data stream subject
to concept drifts. A stream of data is a source which continuously (and potentially endlessly)
emits data. Learning from these data streams is a tremendous challenge. The learning algo-
rithm must be capable of learning out of sequential data and must obtain good predictions
performances under the constraints of limited running time and computer memory.

Another major challenge is that the hidden probability distribution (the concept) which
generates the observations might change over time (concept drift). This means that the ob-
servations used to learn can’t be assumed to be i.i.d. anymore and that a successful learning
algorithm must have the flexibility to adapt to these changing distributions.

In order to deal with these challenges, we claim that a successful learning algorithm must
combine several characteristics. It must be able to learn and adapt continuously, it shouldn’t
make any assumption on the nature of the concept or the expected type of drifts and it should
be allowed to abstain from prediction when necessary.

On-line learning algorithms are the obvious choice to handle data streams. Indeed, their
update mechanism allows them to continuously update their learned model by always making
use of the latest data.

The instance based (IB) structure also has some properties which make it extremely well
suited to handle the issue of data streams with drifting concepts. Indeed, IB algorithms make
very little assumptions about the nature of the concept they are trying to learn. This grants
them a great flexibility which make them likely to be able to learn from a wide range of
concepts. Another strength is that storing some of the past observations into memory can
bring valuable meta-informations which can be used by an algorithm. Furthermore, the IB
structure allows the adaptation process to rely on hard evidences of obsolescence and, by doing
so, adaptation to concept changes can happen without the need to explicitly detect the drifts.

Finally, in this thesis we stress the importance of allowing the learning algorithm to abstain
from prediction in this framework. This is because the drifts can generate a lot of uncertainties
and at times, an algorithm might lack the necessary information to accurately predict. In these
cases, instead of trying to output a prediction at all cost, we have argued that it might be
better to automatically disconnect the algorithm by allowing it to abstain from prediction.
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Chapter 1

Introduction

Over the course of the last few years, the quantity of data generated in real time has exploded.
Health monitoring systems, electricity consumption data, stocks prices on the financial markets
are a few examples of data streams: a source which continuously (and potentially endlessly)
generates data. The data generated by these streams can be used for the purpose of making
predictions about the future value of a variable of interest. For instance, a trader would be
interested to make use of past informations about a company to predict its future stock’s price
value. To this end, a machine learning algorithm can be used. These algorithms can automat-
ically learn a model out of past data and this model will output a prediction when given an
input generated by the stream. Unfortunately, these streams of data represent a tremendous
challenge for machine learning algorithms.

For a start, the pace at which the data are generated by the stream can be a problem
for a machine learning algorithm. Indeed, following up on the example of financial markets,
the price of a stock is often refreshed every millisecond. This means that an algorithm used
for prediction in this environment must have a running time small enough to handle each
observation received while at the same time obtain good prediction performances.

Another challenge is the limited amount of computer memory available to the learning
algorithm. Indeed, because the stream is potentially endless, it isn’t possible to store all the
received data into memory or to endlessly grow a model without setting a threshold on its
memory consumption.

Finally, many things change over time and this is also the case for data streams. The
relationship linking the input data to the target variable can evolve over time. An example
would be a learning algorithm trained to detect whether a person is wealthy or not, compared
to the average citizen. It might be the case that the learning algorithm would have figured that
in the 18th century, a monthly income of 1000$ is enough to be classified as “wealthy”, whereas
this very same income would merely classify this citizen as “middle class” (if not “poor”) in
today’s world. When the concept (the hidden probability distribution that the algorithm is
trying to learn) which generates the observations and their labels changes over time, it is said
that a concept drift has occurred. These drifts are a major challenge for a learning algorithm

11



CHAPTER 1. INTRODUCTION 12

because they can significantly decrease its prediction performances if they are not taken into
account. The additional difficulty is that they are often unpredictable and can happen in
many different ways. Consequently, a machine learning algorithm aiming at learning in this
kind of evolving environment should be capable of adaptation to these changes.

Although it is sometimes possible to get an a-priori information about the expected evolu-
tion of the stream over time as well as the nature of the concept learned, we set the framework
of this PhD thesis in the most general scenario: we don’t make any assumption on the nature
of the concept or how this concept is expected to drift (or remain stationary) over time.

In this framework, we claim that a learning algorithm aiming at achieving good prediction
performances on a data stream subject to concept drifts must combine several properties: it
must be capable to learn and adapt continuously, its prediction model shouldn’t make any
assumption on the nature of the concept it is trying to learn, its adaptation procedure should
be capable to deal with any kind of drift, it should be allowed to abstain from prediction
when necessary and its running time and memory consumption should be constrained. We
now present how we managed to get these properties in this thesis:

On-line learning algorithms [91] are particularly well suited when it comes to continuously
learn and update a model. Indeed, contrarily to batch learning algorithms which need a full
dataset in order to learn a static model, an on-line learning algorithm is able to constantly
update its learned model with the latest observation received. When the concept drifts over
time, this structure grants the required flexibility to adapt to the new concept whereas when
the concept remains static, it allows the algorithm to make use of all the available observations
to infinitely fine tune its learned model. The challenge with these algorithms is to come up
with an adaptation / forgetting mechanism which is suited for the type of drifts encountered.

Many on-line learning algorithms have been devised with the purpose of handling drifting
data streams. Some of them are regular batch learning algorithms which have been adapted
to the on-line setting. They include sets of rules [6], decision trees [11, 29] or ensemble method
[60] for instance. Amongst all the type of learning algorithms, we claim that instance based
methods have many characteristics which makes them particularly well suited to overcome
some of the challenges discussed above.

Instance based learning algorithms [91] retain (some of the) past observations into memory.
They postpone the generalization part of the learning process until a prediction is required.
When this is the case, a local model is built around the latest observation and used to determine
its label. The local model is then discarded and the latest observation is added to the memory.

This structure is naturally well suited to the on-line learning framework, as the update of
the model is simply performed by adding the latest observation to the memory without the
need to retrain the algorithm from scratch. Furthermore, when the concept drifts, forgetting
the outdated model is achieved by deleting from memory the observations which aren’t rel-
evant with the new concept. In particular, when the concept changes locally, this forgetting
mechanism allows for a bespoke update of the local parts of the model which are outdated
without loosing the valuable information accumulated elsewhere.

Because the running time and memory consumptions of these algorithms will be a function
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of the number of observations saved into memory, they can easily be tweaked to deal with the
constrains of the problem at hand, simply by limiting the number of observations retained
into memory. In both cases (whether it is for the purpose of adapting to concept change or
for the purpose of constraining the memory consumption and running time of the algorithm),
the challenge with this strategy is to accurately select the observations which will be allowed
to remain into computer memory.

Due to their lack of assumptions regarding the nature of the concept learned, the models
that can be learned from instance based methods are also generally much more flexible than
the ones of algorithms assuming that the concept has a particular characteristic (e.g. linear
relationship between the observations and their labels). This ensures that the learning al-
gorithm will be able to adapt to a wide range of concepts, which can prove useful when no
assumption can be made regarding the nature of the future concepts.

Finally, keeping past observations into memory allows for comparison of the latest obser-
vation received with the ones stored into memory. This brings extra meta-informations which
can be used by the algorithm. In particular, when no assumption can be made about the
expected nature of future drifts, we claim that adaptation should rely on hard evidences of
obsolescence and we show in this thesis that this strategy is capable of adapting to a wide
range of drifts.

Furthermore, these saved observations could also be used by the learning algorithm to know
which parts of the feature space have already been explored, allowing to confidently predict on
the regions which have been extensively covered or conversely, adopt a cautious stance when
an observation is received in an unexplored region of the feature space. In the latter case, we
claim that, in order to retain good predictions performances, a learning algorithm should be
allowed to abstain from prediction, particularly when wrong predictions are costly.

Prediction with a reject option is a field of machine learning which focuses on devising
algorithms that can abstain from prediction when the estimated reliability of a prediction is
not high enough. The underlying idea is to decrease the proportion of observations for which
a prediction is given in order to increase the percentage of accurate predictions.

In the particular case of drifting data streams, the hidden probability distribution generat-
ing the observations might change in many unexpected ways, and consequently sometimes, a
learning algorithm might not have all the necessary information in order to accurately predict
on an unlabeled observation. For instance, if a drift occurs in a previously unexplored part
of the feature space or if the new hidden probability distribution in force after the latest drift
completely differs from the old one, without additional prior information, the first predictions
given by a machine learning algorithm in these regions would probably be closer to “guesses”
than confident predictions.

In such cases, these “guesses” can end up being costly predictions errors and therefore we
propose to abstain from prediction as a way to avoid this. The challenge here is to accurately
spot the observations which might lead to a wrong prediction while maximizing the coverage
(i.e. the proportion of observations for which a prediction is given).

In this thesis, we address the problem of learning from a data stream subject to concept
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drifts under the constrains of limited computer memory and running time and without assum-
ing any knowledge about the nature of the concept learned and the type of drifts encountered.
We claim that algorithms combining the instance based and on-line learning structures are
particularly well suited to overcome these challenges and that, in this environment, a learning
algorithm should be allowed to abstain from predicting when there isn’t enough available in-
formation to accurately predict.

In chapter 2 we lay down the framework associated with the problem of learning on a data
stream subject to concept drifts. We also briefly introduce on-line learning algorithms.

Chapter 3 intends to break down the different algorithm structures that can be used when
learning in an evolving environment. We discuss each structure’s strengths and weaknesses
and present some of the main learning algorithms based on them.

In chapter 4, we claim that the instance based structure has many properties which make
it naturally well suited to address the problem of learning on data streams subject to concept
drifts. In particular, we propose to take advantage of the meta-informations brought by
storing past observations into memory. This idea is experimented with a novel algorithm
(The Droplets Ensemble Algorithm) which combines instance based and ensemble learning
structures and uses past observations to keep track of the local expertise of each base learner
in the explored parts of the feature space. When a new unlabeled observation is received,
this mechanism ensures that the base learner(s) which managed to obtain the best prediction
performances on similar observations will be selected for prediction. We also propose an
adaptive mechanism which ensures that the area of expertise associated with the base learners
remains up to date with their current performances. This is done by reducing the area of
expertise of the base learners which predict poorly and associating the area located around
the latest observation with the base learner which obtained the best prediction accuracy in
this part of the feature space.

In chapter 5, we investigate the benefits of abstaining from prediction in our framework. We
claim that, because of the uncertainty that they create, concept drifts can significantly diminish
the prediction performances of a learning algorithm. Indeed sometimes, there aren’t enough
information available to the algorithm to accurately predict. In the particular case where costs
can be associated with good and bad predictions, we claim that an algorithm should be allowed
to abstain when the estimated reliability of its prediction is not high enough. In order to show
this point, we perform an in depth study with several state of the art drift handling algorithms
which are given an ensemble of reliability estimators. When the estimated reliability of their
prediction is not high enough, the algorithms abstain from prediction. We showed through a
set of experiments that their overall prediction cost could be largely improved by abstaining
to predict on difficult observations.

Chapter 6 aims at combining the findings of chapters 4 and 5 together in order to overcome
the initial problem of accurately predicting on a data stream subject to concept drifts. Here
again, the idea is to take advantage of the meta-informations provided by past observations
saved into memory by abstaining from prediction when there isn’t enough information to
accurately predict the label associated with the latest observation. This happens, either if the
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latest observation is received in an unexplored part of the feature space either if it is received
in an area where observations with conflicting labels have been received. A new algorithm
(the Droplets algorithm) is developed to test these ideas. Its main strengths and weaknesses
are discussed and its predictive performances are compared to a batch of state of the art drift
handling algorithms. The results obtained showed that the Droplets algorithm managed to
over-perform other drift handling algorithms by consistently obtaining good results on datasets
reproducing different types of drifts.

In chapter 7, we look into the problem of limited computer memory and running time in the
case of instance based learning algorithms. We show that both of these issues can be resolved
by setting an upper bound on the maximum number of observations allowed into memory. We
then claim that, instead of using the time stamps of the observations to decide whether they
should remain in memory or not, better prediction performances can be achieved by saving the
observations which will minimize the differences in the predictions and model obtained with
infinite memory. This is because the information brought by the time stamp of an observation
is simply not enough to decide whether it should remain into memory or not as it might lead
to the selection of noisy, redundant or even outdated observations. We implement this idea
with the Droplets algorithm presented in chapter 6 and show through a set of experiments
that this memory management technique obtains much better performances than discarding
the observations that would be outside a temporal window.

Finally chapter 8 concludes and goes through a set of perspectives.



Chapter 2

Framework

Throughout this chapter, we lay down a general framework for machine learning, data streams,
concept drifts and on-line learning algorithms.

2.1 Formal Machine Learning framework

In this section, we briefly introduce the machine learning framework as it will be used in this
thesis.

2.1.1 Main goal of machine learning

We live in an era where data are present almost everywhere. For instance, there are more than
one million transactions per hour performed on Walmart’s website, around 269 billions emails
sent each day over the world and big corporations often have databases holding petabytes of
data. Being able to extract informations from these data constitute one of the major challenge
of our time. However, these huge datasets are just too big to be analyzed by a human being
which wouldn’t be able to make sense of them and automated methods for data analysis are
required.

That’s the goal of machine learning. Machine learning is defined as “a set of methods that
can automatically detect patterns in data, and then use the uncovered patterns to predict
future data, or to perform other kinds of decision making under uncertainty” [78].

2.1.2 Supervised learning

In supervised learning, the aim is to learn a mapping from an input space X to an output space
Y. To this end, a data set of N labeled observation (called training set) is usually provided
{(xi, yi)}Ni=1. We call xi the ith observation with xi =

{
x1
i , ..., x

d
i

}
∈ X and where d is the

dimension of the input space. The d values contained in the vector xi are called features (or
attributes). For instance, the feature’s vector could hold the characteristics of a human being,
such as its age, weight, height and so on. We call yi ∈ Y the label which is associated with
xi. It is usually assumed that this label can take two types of values.

16
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In the classification setting, the label yi ∈ {1, ..., C} belongs to a finite set of categorical
variables. For instance, the categorical labels which could be associated with the characteristics
of the human being could be Y = {male, female}. When C = 2 we refer to this as the binary
classification setting whereas when C > 2 we call this the multi-class classification setting.

In the regression setting, the label yi is a real number. Examples of real valued labels
could be the body temperature or number of miles traveled per year for a given person.

In both classification and regression settings, the assumption is that there is a hidden
function h such that h (xi) = yi and the goal is to use the provided training set to create
an estimate ĥ of this function. This estimate is then used for prediction ĥ (xi) = ŷi (the
hat symbol is used to denote an estimate) on previously unseen observations (this is called
generalization).

In other words, it is assumed [91] that the couples {(xi, yi)} are independent and identically
distributed (i.i.d.) from a joint distribution P (X,Y ) and the goal of a machine learning
algorithm is to estimate this joint distribution in order to make predictions.

We call the joint distribution P (X,Y ) as well as the true hidden function h the concept
that the machine learning algorithm is trying to learn.

2.1.3 Parametric vs non-parametric models

In order to estimate the unknown function h, two types of models can generally be used:
parametric and non-parametric models.

Parametric models Parametric models rely on assumptions regarding the nature of h. For
instance, in the case of linear regression, the assumption is that the relationship between
the observations and their labels is linear. Once a parametric model has been selected, the
problem of estimating h is greatly simplified. Indeed, what is left to do is to define a procedure
to automatically fit the model’s parameters to the training data.

These models have the advantage of being computationally fast to use on unseen observa-
tions but the strong assumptions made might result in poor prediction performances if they
do not accurately reflect the reality [78].

Non-parametric models On the other hand, non-parametric models do not make explicit
assumptions about the nature of h.

Due to this lack of assumptions, the model is given much more flexibility to estimate h
than in the parametric case which might result in better prediction performances because the
estimate is closer to the reality. The downside is that in order to accurately estimate the
reality, non-parametric models generally require more observations than non-parametric ones
[78].
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2.1.4 Source of prediction errors

In this section, we review some of the main sources of prediction errors.

Reducible vs irreducible errors The accuracy of the predicted value ŷ depends on two
quantities called reducible and irreducible errors.

The reducible error comes from the fact that the chosen model will generally not be a
perfect estimate of the true hidden function h and that inaccuracy will introduce some errors.
However, this error could potentially be reduced by using the best machine learning method
to estimate h.

On the other hand, even if a machine learning algorithm was able to perfectly estimate
h, it wouldn’t predict y perfectly [52]. For instance, in real life, the sensor which records
the data on which the algorithm is learning might not be very accurate, introducing some
variations around the true values of the observations. Another reason is that, it might be the
case that, in order to perfectly predict y, some features which can’t be measured would need to
be provided. This is called the irreducible error because regardless of how well h is estimated,
this error can’t be reduced.

Thus, supervised learning algorithms aim at creating estimates of h which minimize the
reducible error.

The bias-variance trade-off As discussed in Section 2.1.3, non-parametric models do not
make any explicit assumptions about the nature of h, which gives a lot of flexibility to their
estimates. One of the consequences is that, if the training dataset is slightly modified, the
obtained estimate of h might be very different from the estimate obtained with the initial
training set.

Variance refers to the error resulting from the sensitivity of the model to changes in the
training set. The more flexible the learner is, the more variance it has. High variance can
result into over-fitting (the issue of over-fitting is discussed hereafter) the training set.

Conversely, parametric models tend to make assumptions regarding the nature of h which
means that if the training set is slightly modified, the new estimated function ĥ is unlikely to
be very different from the original one.

Bias refers to the error introduced by making assumption about the nature of h. The less
flexible a model is, the more bias it has. High bias can result into under-fitting the training
set.

Therefore, the bias-variance dilemma refers to the problem of choosing a model that si-
multaneously minimizes two different sources of errors (which is impossible) [52].

Over-fitting Over-fitting refers to the fact that, as the flexibility of the chosen model in-
creases, the overall prediction error achieved on the training set will tend to decrease whereas
the overall prediction error achieved on the test set will tend to increase. This is because the
learning algorithm tries to find patterns in the training data that doesn’t exist and ends up
learning patterns which have been generated by noise rather than by the true hidden function.
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The consequence is a large test set error because the patterns founds on the training set did
not exist.

2.1.5 Measures of models performances

Once a model has been chosen and trained, some metrics are needed in order to assess the
quality of its estimate of h. The performances are generally evaluated on a set of previously
unseen observations: the test set.

In order to asses how well a model is performing, several different measures can be used
and this choice will often depend on the problem at hand.

For instance, in the regression setting, one of the most common performance measure is
the mean squared error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)2

If the predictions ŷi of the model are close to the true value yi, then the MSE will be small.
On the other hand, if there is a substantial difference between the predictions and the true
value, then the MSE will be large.

In the classification setting, the most common performance measure is the average miss-
classification rate computed with 0-1 loss function:

1

n

n∑
i=1

I{yi 6=ŷi}

where the indicator function IA is equal to 1 is A is true and 0 otherwise. This function
simply computes the average number of times where the predicted label was different from the
real one.

2.2 Data Streams

The results achieved in recent years by machine learning algorithms in the classical off-line
setting (i.e. when the whole dataset of observations on which the algorithm is learning is
available at training time) have been impressive. However, many data are generated in real
time nowadays like sensors reading, the prices of stocks in financial markets or data generated
by social networks for instance.

A data stream is defined as a source of data which emits observations sequentially, in real
time, infinitely and potentially at a very high speed.

In this section, we start by giving a brief formalization of the data streaming framework and
then present the tremendous challenges faced by an algorithm learning in this environment.
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2.2.1 Formalization

At time t0 a stream starts to emit unlabeled observations {xt0 ,xt1 ,xt2 , ...} which are received
one by one, at regular time intervals (i.e. ∀k ∈ N : tk+1− tk = u where u ∈ R+∗ is a constant)
and endlessly. Later on, the label yt which is associated with observation xt is released. In
this thesis, we assume that yt is always released before reception of xt+1.

The goal of a machine learning algorithm in this framework is similar to the classical off-
line setting: create a learner h : X → Y , which can predict as accurately as possible the label
yt which is associated with observation xt. However, data streams bring new challenges that
must be dealt with.

2.2.2 Challenges

We now go through the main challenges that must be overcome by an algorithm learning from
a data stream.

Sequential observations and on-line learning: Receiving the observations one by one,
without having access to a whole dataset from scratch requires a learning algorithm which can
generalize from the received observations and constantly update itself when a new observation
is available. On-line learning algorithms are particularly well suited for this framework as
they are capable of continuously using the latest observations received to extend the existing
model’s knowledge. The topic of on-line algorithms will be covered in depth in section 2.4.

Constrained memory usage: Because a data stream is potentially infinite, it isn’t possible
to store all the past observations into memory. Thus, the memory consumption of a learning
algorithm in this framework must remain constrained and the model can’t expect to have
access to all the previously received observations.

Constrained computational time: Another challenge is the limited computational time
which is given to the algorithm for prediction and to update its model. Indeed, when an
unlabeled observation xt is received, the prediction and update functions of the model must
be completed before reception of observation xt+1. This can prove particularly challenging if
the data are streamed at a very high frequency (e.g. each consecutive observations are received
every millisecond).

Concept drifts and adaptivity: The general assumption made for the off-line setting
(that the observations are independent and identically distributed (i.i.d.) from a stationary
distribution), generally doesn’t hold in the data streaming framework.

Indeed, the observations generated by a data stream are often related to each other, which
prevents the independence assumption. For instance, if a camera records a video stream, it
could be expected that the image recorded at time t would be related to the image recorded
at time t+1.



CHAPTER 2. FRAMEWORK 21

Furthermore, many things evolve over time in our world and, because each observation
is a snapshot of an object at a given point in time, it is expected that the characteristics of
this object (and therefore of the observations) will also evolve over time. The consequence
is that it can’t be assumed that the observations are identically distributed from an unique
distribution. An example would be the evolution of the price of a stock where the price can
switch from a prolonged regime of low volatility to another prolonged regime of high volatility.

Thus, in the data streaming framework, no assumptions is made on the distribution of the
data which is allowed to unexpectedly change over time in any way conceivable: a phenomenon
referred as concept drift. One of the consequences is that learning in this environment requires
an algorithm which can adapt to such changes, as a non-adaptive model trained under the
classical i.i.d. assumption will inevitably become obsolete over time. The topic of concept
drift will be presented in further details in section 2.3.

2.3 Concept Drift

In this section, we define and characterize concept drifts as it was done in the work of Gama
et al.[41].

2.3.1 Definition

In the data streaming framework, it is assumed that each couple {xt, yt} is generated by a
hidden joint distribution Pt (X,Y ). According to the Bayes rule, Pt (X,Y ) can be decomposed
as follows:

Pt (X,Y ) = Pt (Y/X)Pt (X)

where Pt (Y/X) is the posterior probability of the label given the observation and Pt (X)
is the prior distribution of the observations. We call concept the joint law Pt (X,Y ) that the
learner ht is trying to approximate at time t.

In our framework, we focus on the case where the concept is allowed to evolve over time
and concepts changes are assumed to be unpredictable. In some real world scenarios, the
changes could probably be anticipated as the concept might display a seasonality pattern,
but the underlying idea here is that if a learner can be constructed to successfully operate
in the general setting, then it will also work for the particular case of reoccurring concepts
(reoccurring concepts will be described formally in Section 2.3.2.2).

Formally, it is said that the concept drifts at time t+ 1 if:

Pt (X,Y ) 6= Pt+1 (X,Y )

2.3.2 Characterization

Webb et al. [102] have provided a rigorous characterization of the drifts that we summa-
rize here. The interested reader is referred to the original paper for further details. To our
knowledge, this is the most advanced and formal characterization of concept drifts.
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The notations used here are the ones of the original paper. We have kept the distinction be-
tween quantitative and qualitative characterizations of drift used by the authors. Quantitative
measures of drift aim at quantifying a concept drift whereas the qualitative characterization
aims at providing formal definitions of the different types of drifts.

2.3.2.1 Quantitative measures of drift

Drift magnitude is a metric which quantifies the degree of difference between two consecutive
concepts. Formally, we denote D (t, t+m) the distance between the concepts at the start
time t and the end time t+m of the drift. The authors chose to use the Hellinger [45] distance
to quantify this. This distance is one of the most widely used when it comes to compare
probability distributions.

Drift duration is defined as the elapsed time over which a period of drift occurs. For
instance, if a drift starts a time t and finishes at time t+m, the duration of the drift is
(t+m)− t.

Drift rate quantifies how fast the concept is changing at time t. This is defined as:

Ratet = lim
n→∞

nD

(
t− 0.5

n
; t+

0.5

n

)
2.3.2.2 Qualitative characterization

A period of concept stability is defined as a time interval [t; t+m] such that

D (t, t+m) = 0

The authors also introduce Sa and Ea respectively to denote the starting time and ending
time of the ath stable concept ().

The drift frequency measure counts the number of drifts that occurred during time interval
[t, t+m]. It is defined as:

F[t,t+m] = |{w|t ≤ Sw ≤ t+m}|

An abrupt drift denotes a sudden change from concept a to concept a + 1. The authors
argue that an abrupt drift is defined according to a parameter δ ∈ N∗ which sets the maximum
duration over which an abrupt drift can occur. They claim that the value of δ depends on the
context of the data stream. According to the authors, an abrupt drift verifies:

Sa+1 − Ea ≤ δ

In this thesis, we consider that a drift is abrupt if δ = 1 (i.e. the concept changes within
one observation only). This is because this definition is the most restrictive for an abrupt
concept change.

Conversely, we say that an extended drift occurred if

Sa+1 − Ea > δ
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A gradual drift over m time steps is defined as:

∀t ∈ [Ea, Sa+1] D (t, t+m) ≤ µ

with µ a parameter which defines the maximum difference allowed between two successive
concepts. This definition doesn’t necessarily assume that the drift rate should be constant.

A recurring concept denotes the reappearance of a previously seen concept. Formally:

∃a∃b with a 6= b | D (Sa, Sb) = 0

For instance, this type of drift can occur with datasets showing an element of seasonality.

2.3.2.3 Statistical characterization

Gama et al.[41] also gave a statistical characterization. According to the Bayes equation
derived in the concept drift definition, if Pt (X,Y ) 6= Pt+1 (X,Y ) then:

1. Either Pt (Y/X) 6= Pt+1 (Y/X) and Pt (X) = Pt+1 (X). When the posterior distribution
of the label changes, we say that a real concept drift occurred. This means that the
probability that a given observation is associated with a particular label has changed.

2. Either Pt (Y/X) = Pt+1 (Y/X) and Pt (X) 6= Pt+1 (X). When the prior distribution of
the observation changes, we say that a virtual concept drift occurred. This means that
the probabilities of occurrence of an observation in some (or all) parts of the feature
space have changed.

3. Either Pt (Y/X) 6= Pt+1 (Y/X) and Pt (X) 6= Pt+1 (X). This case is also referred as real
concept drift. In this case, both the probabilities of occurrence of an observation in some
parts of the feature space and the probability that a given observation is associated with
a particular label have changed

2.4 On-line Learning

In order to handle drifting concepts, on-line algorithms are the most widely used. In this sec-
tion, we start by presenting these algorithms and we then review some of the main procedures
used to evaluate their performances on data streams.

2.4.1 Presentation

In the on-line learning setting, the observations are presented to the learning algorithm one
by one. Contrarily to the off-line setting which relies on the assumption that the observations
are i.i.d., there are no such assumption here. This means that an observation is allowed to
be dependent of the value of the previous one and that the concept is allowed to change over
time.
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The operating process of an on-line algorithm also differs from the one of an off-line algo-
rithm: When an observation xt is received at time t, the model ht−1 learned at the previous
time step is used to output a prediction : ŷt = Predict (ht−1;xt). The true label yt is then
released and the prediction error `t of the model is computed according to the chosen loss
function : `t = ` (yt, ŷt) (with ` the chosen loss function). The learner is then updated using
the latest labeled observation: ht = Update (ht−1; {xt, yt}). The whole process then restarts
with observation xt+1.

Therefore, on-line learning algorithms base their predictions on a model continuously up-
dated with the latest observation instead of repeatedly using a static model learned from a
fixed training set. This update mechanism makes these algorithms particularly well suited to
deal with evolving data streams.

2.4.2 Evaluation procedures

In order to evaluate the performances of a learning algorithm, it is necessary to define which
observations will be used for training and which ones will be used to test the model learned. In
the traditional off-line setting, a training and test sets can be used. In particular, it is common
to analyze and average the performances of the models produced with different arrangements
of the dataset, a procedure known as cross-validation. However, cross-validation can’t be used
in the framework of evolving data streams as the observations might be dependent of each
other and shuffling them would mix their temporal order.

Furthermore, because the data are not i.i.d., the performance of the learning algorithm
might also change over time. For instance, an algorithm might obtain good prediction perfor-
mances during a period of time followed by poor ones later on as a result of an unexpected
drift. Therefore, it is necessary to keep track of the evolution of the performances over time
by continuously taking snapshots of the model’s performances.

Gama et al. [41] reviewed some of the most common evaluation procedures that we sum-
marize here.

2.4.2.1 Holdout

In this case, the model learned is evaluated on a test set at regular time intervals. The test
set is constituted of observations received from the stream which have not been used yet to
train the algorithm. The procedure is as follows:

1. Train the algorithm with observations {t1, ..., tk} which results in htk .

2. Test htk on observations {tk+1, ..., tk+l} and record the prediction performance.

3. Update htk with observations {tk+1, ..., t2k} which results in ht2k .

4. Test ht2k on observations {t2k+1, ..., t2k+l} and record the prediction performance.

5. Repeat this procedure until all the remaining observations have been used.
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Note that in order to avoid testing the algorithm twice on the same observation, it is necessary
to have k ≥ l. Also note that in this case, t1 is used as a shortcut to designate the observation
{xt1 , yt1}.

This approach is best suited for batch learning algorithms.

2.4.2.2 Prequential

Here, the idea is to use each new unlabeled observation to first evaluate the prediction given
by the algorithm (test) and then, once the label is released, to update the model (train). There
are three type of prequential evaluations: interleaved test-then-train which uses a landmark
window, fading factor or sliding window. These methodology are the most widely used to
assess the performance of on-line algorithms.

Interleaved test-then-train: With this method, the error at time T is computed as the
average of the prediction errors since the stream started:

LT =
1

T

T∑
t=1

`t

This method has the advantage of making use of all the observations available to test the
algorithm. However, there is no explicit forgetting mechanism, and the plot obtained will get
smoother as the number of observations considered increases. This means that the evolution
in the prediction performances due to concept drifts might not appear properly in the plot,
especially if a drift occurs after a large number of observations is received.

Fading factors: In order to get a better estimate of the recent performances of the algorithm,
it is possible to apply a decay factor α ∈ ]0; 1[ to the past errors. This method ensures that
recent changes in the evolution of the performance are tracked more accurately. In the case
where α = 1, this comes to the regular interleaved test-then-train. Gama et al. [40] proposed
to use the following equation:

LT =
ST
NT

with

ST = `t + αST−1 and S1 = `1
NT = 1 + αNT−1 and N1 = 1

Sliding window: Another way to estimate the recent performances of the learning algorithm
is to use a sliding window. In this case, the performance achieved by the algorithm on the
latest k observations is computed as:
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LT =
1

k

T∑
t=T−k+1

`t

where k denotes the size of the window.
Just as fading factors, a sliding window has the advantage of allowing to observe the

reactivity of the algorithm after concept changes. Note that a sliding window of infinite size
would result in the interleaved test-then-train evaluation.

2.5 Conclusion

In this chapter we have laid down the framework associated with the problem of supervised
learning on data streams subject to concept drifts. We have used some of the most widely used
definitions in the literature to formally define concept drifts and we have introduced on-line
learning algorithms which are the most widely used in this framework.



Chapter 3

Taxonomy of drift handling algorithms

Creating an adaptive algorithm capable of learning a predictive model from an evolving data
stream requires to make many choices regarding its structure. Most of these choices are
dictated by the problem at hand.

In this section we review the different types of structures that can be given to a drift
handling algorithm, present some of the state of the art algorithms implementing these struc-
tures and discuss whether they are adapted or not to the problem at hand. The taxonomy
of methods used here is largely inspired by the work of Gama et al. [41] although we have
completed it with some of the latest algorithms. As the authors point out, the idea here is to
see the creation of an adaptive learning algorithm as a set of modular components which can
be permuted and combined together. Therefore, some of the algorithms presented here might
belongs to several categories at the same time.

The list of methods and algorithms provided here is not exhaustive and some algorithms
which haven’t been described here will be described in later chapters.

3.1 Observations management

In order to evolve, an adaptive learning algorithm should define a process to learn the latest
concept as well as a forgetting mechanism to get rid of the outdated model. In this section,
we discuss how the observations received from the data stream can be used in order to achieve
these two goals.

Figure 3.1 details the different types of strategies available.

3.1.1 Learning

When it comes to learning, the goal is to choose which data will be used for learning the latest
concept. The common assumption behind the overwhelming majority of learning algorithms
is that the most recent data should be the most representative of the new concept and thus
should be used for learning.

27
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Figure 3.1: Types of observations management

3.1.1.1 Learning from a single observation

In its most basic form, learning from a data stream can be performed with a single observation
(usually the latest one). Upon reception of an unlabeled observation, the previously learned
model is used to output a prediction. Once the true label which is associated with the observa-
tion is received, the prediction error is computed and the model is updated accordingly. Thus,
the updating process is a function of the previously learned model, the latest observation and
the prediction error on this observation. The latest observation is then discarded and won’t
be available anymore to the algorithm.

Some of the main algorithms based on this structure include WINNOW [79], VFDT [29],
STAGGER [92], DWM [60], SVM [96], IFCS [20] and GT2FC [21].

The advantage of this mechanism is that it is naturally well suited for continuous learning.
When the concept remains stable, the model learned will be continuously fine tuned with
the latest observations. However, when the concept drifts, there isn’t an explicit forgetting
mechanism and adaptation happens by diluting the previously learned concept over time.
This adaptation takes place through a parameter controlling the trade-off between speed of
adaptation and robustness to noise.

3.1.1.2 Learning from multiples observations

Another solution is to maintain a set of observations into memory on which the model learns.

Fixed size windowing: One way of doing this is to use a sliding window of fixed size over
the recent observations which adds the newest observation to the set and discard the oldest
one. At each time step, the model is then retrained using the observations in the window.

Some of the main algorithms based on this structure include FLORA [103], Mitchell et al.
[77], Lazarescu et al. [72].
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The advantage of using a window of fixed size over the recent observations is that it
provides a simple mechanism for learning (by continuously adding the latest observation to
the window) and forgetting (by removing the oldest observation from the window). However,
selecting an appropriate window size is a challenging task: if the window is too small, the model
might react quickly to abrupt drifts but also over-react to noisy observations. Furthermore,
a small window might not hold enough observations to accurately learn the current concept.
Conversely, if the window size is large, the model learned will most likely be much more
robust to noisy observations and hold enough observations to learn an accurate model when
the concept remains stable. The downside is that, with a large window, the model might not
be able to adapt quickly enough to abrupt changes.

Adaptive size windowing: One way of solving this problem would be to use a window of
variable size. In this case the size of the window is automatically set according to a change
detector. The idea is to let the window grow as long as no change has been detected and to
shrink its size when a change is detected, ensuring that the observations kept into the window
are relevant with the current concept.

Some of the main algorithms based on this structure include FLORA2 [103], Klinkenberg
and Joachims [57], Maloof and Michalski [76], Zliobaite [107], Klinkenberg [83], Gama et al.
[39], and Kuncheva and Zliobaite [69, 108, 109], Koychev and Lothian [62].

Provided that the change detector is capable of accurately spotting concept changes, this
solution ensure ensures that only the relevant data will be used to learn the model. However,
we highlight in Section 3.2.2.2 that it is very difficult to implement a change detector that can
deal with a wide range of scenarios (e.g. abrupt and gradual drifts) and to take a relevant
decision once an alarm is triggered (e.g. should the whole model be discarded or only some
parts of it?).

Furthermore, the common assumption behind windowing (whether it is of fixed or adaptive
size) is that the recent observations are the most relevant and that a model should learn on
a contiguous set of observations. In the first case, it could be argued that recent observations
aren’t necessarily the most relevant as it is the case with noisy observations. In the later case,
it seems overly restrictive to constrain the learning set to contiguous data. In the case of
reoccurring concepts for instance, the relevant data could be fragmented over time.

Sampling: Another solution would be to sample the observations which will be used to
learn from. Sampling algorithms try to summarize the characteristics of the whole stream
by retaining into memory the observations which have been selected according to a given
probability distribution. In particular, this probability distribution might be biased in favor
of the most recent observations in order to account for the drifts.

Some of the main algorithms based on this structure include those of Vitter [100], Al-Kateb
et al. [5], Efraimidis and Spirakis [31], Aggarwal [2].

This mechanism is well suited to overcome the problems raised by learning on contiguous
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data. Indeed, sampling gives the algorithm a better chance of learning from a diversified set
of observations (e.g. the data generated by the stream might have a temporal dependence
and consequently, it could be expected that information brought by storing observations xt
and xt+1 would be smaller than the information brought by storing observations xt and xt+k,
with k large). Furthermore, by reducing the number of observations which will be fed to the
algorithm, its running time might be significantly improved. Finally this strategy will work
well, when there is a constrain on the maximum memory available but where it is desirable to
retain as much of the past knowledge as possible.

The downside is that the memory will be cluttered with a “little bit of everything”. This
means that when the concept drifts frequently, the memory will hold a few observations be-
longing to each of the past concepts. The relevance of this strategy can be questioned as the
information brought by the observations related to past concepts might be very small (e.g. it
is unclear how much information would be brought to the model by the last 2 observations
related to one of the past concept). Because they might belong to different concepts, the saved
observations could also confuse the learning algorithm as they might conflict with each other
(e.g. xt = xt+k and yt 6= yt+k).

A particular type of sampling algorithms are the instance based algorithms which do not
try to explicitly generalize from the observations saved in memory (i.e. they don’t maintain a
model). These algorithms have the liberty to select an arbitrary subset of observations when
it comes to chose which ones will be used to learn. They can rely on a wide range of custom
criteria to select these observations such as time or a probability distribution (as discussed
previously) but they can also use spatial relevance (use the location of an observation in the
feature space) or consistency (assess whether an observation in memory is different from its
neighbors). These criteria can be used independently or combined. Kuncheva and Gunn [67]
have proposed a taxonomy of drift handling instance based methods.

Some of the main algorithms based on this structure include IB3 [4], IBLStreams [93],
ANNCAD [70], IBL-DS [8], SAM-kNN [75], Lazarescu [71].

Because of the flexibility that they provide, these algorithms are particularly well suited to
handle data streams subject to concept drift. They make very little assumptions regarding the
nature of the concept and they can use many different criteria to decide which observations
should be kept into memory. The updating step of the model is easy as it only requires to add
the observations to the memory.

The downside is that these algorithms have to create a local model each time a prediction
is required. This step might increase the running time of the algorithm.

3.1.2 Forgetting

We now review some of the main forgetting mechanisms used to diminish the effect of past
observations on the learned model. Ultimately, choosing the appropriate forgetting mechanism
depends on the expected type of drifts (e.g. abrupt, gradual, reoccurring, ...) as well as the
characteristics of the data (e.g. is the the data stream subject to a lot of noise?).
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3.1.2.1 Abrupt forgetting

Abrupt forgetting refers to the fact that an observation is either fully taken into account to
update the current model, either is not used at all. We can further distinguish the algorithms
relying on an abrupt forgetting mechanism by the criteria used to select the observations that
should be forgotten.

Windows: The window-based algorithms described and discussed in Section 3.1.1.2 are ex-
amples of abrupt forgetting mechanisms as past observations are either in or outside of the
window. The observations can be removed one by one as in the case of a sliding window of
fixed size or as a whole batch as in the case of a window of adaptive size.

When the observations are removed one by one from memory, as it is the case with a
sliding window of fixed size, the result will be a model which will gradually forget the past.
This strategy is best suited for gradual drifts but might lack reactivity in cases of abrupt drifts
of high magnitude for instance.

Conversely, when a whole chunk of observations is deleted at once, as it is the case with
an adaptive window, the model learned with the remaining observations will be capable of
quick adaptation to abrupt concept drifts. This, however, is a risky strategy as it leaves the
algorithm exposed to the problem of “catastrophic forgetting”. Indeed, if noisy observations
trigger the forgetting mechanism by mistake, this could lead to the loss of valuable accumulated
information. This type of forgetting mechanism might also struggle with slow and gradual
drifts that might never be detected.

In both cases, it is interesting to note that the criteria used to get rid of the old observations
is “time” and that both strategies rely on the assumption that old observations are outdated
and thus should be deleted in priority.

Sampling: Because an observation is either inside or outside the sample, sampling also
uses the abrupt forgetting strategy. The criteria discussed earlier (e.g. time, a probability
distribution, error, ...) to learn from a sample can also be used to select the observations
which will be forgotten.

For instance, in Salganicoff [88, 87] (DARLING), a weight is associated with each ob-
servations stored into memory. This weight is decreased as a function of the proximity and
number observations around the observation of interest. When this weight drops below a given
threshold, the observation is removed from memory.

3.1.2.2 Gradual forgetting

Gradual forgetting refers to the fact that the effect an observation has on the current model
never totally vanish. In this respect, this strategy can be seen as a full memory approach as
the contribution of past observations is never null. This strategy is closely linked with the
algorithms learning from one observation which were presented in Section 3.1.1.1.
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Figure 3.2: Types of learning mechanisms

Fading factor: One way of implementing this mechanism is to give a weight to each ob-
servation which will decrease over time according to a parameter α (the fading factor). The
underlying idea is that the older an observation is, the less relevant it is and thus the less
weight it should be given.

Formally: when a new observation xt is received at time t, the stored statistics St−1 are
updated according to an aggregation function G such as: St = G (xt, αSt−1) with α ∈ ]0; 1[
the fading factor.

Some examples of the algorithms based on this structure include Cohen and Strauss [27],
Koychev [61], Law and Zaniolo [70] and Klinkenberg [83], Salganicoff [87].

Here again, the main criteria used to allocate a weight to an observation (and thus to forget
the past) is time. This mechanism is best suited for gradual drifts with constant drift rate
(ideally a drift rate which matches the value of the fading factor) and where past observations
keep having a positive effect on the learned model.

On the other hand, allowing all of the past observations to have an influence (even if it is a
very small one) on the current model could also be questioned, particularly in the case where
they have a negative effect on the learned model (i.e. they decrease its performances). An
example would be noisy observations which would be allowed to have an effect on the learned
model. Finally, the major difficulty with this method is to accurately estimate the value which
must be associated with the fading factor. This could prove very troublesome when the drifts
occur at irregular frequencies and when they are of different types (e.g. abrupt or gradual).

3.2 Learning mechanisms

This section is concerned with the possible strategies used to generalize from the observations:
whereas the previous section was focusing on which observations will be used to learn a model,
here the emphasis is on how to learn this model.

Figure 3.2 gives an overview of the different learning mechanisms.
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3.2.1 Learning mode

We now go through the main strategies used to update the learning algorithm once a new
labeled observation have been received.

3.2.1.1 Retraining

In this case the old model is deleted and a new one is learned from scratch with the observations
which have been kept into memory. Most of the time, these algorithm are combined with a
drift detector which triggers the update of the model.

Some of the main algorithms based on this structure include Gama et al. [39], Street and
Kim [94], Zeira et al. [105], Klinkenberg and Joachims [57].

The advantage of this solution is that it allows to easily convert an off-line learning algo-
rithm to the on-line setting. Moreover, when this strategy is combined with a drift detector,
it could also obtain good performances in the cases of abrupt drifts of high magnitude which
make the whole model out of date.

The major drawback is that it is computational expensive to learn a whole model from
scratch. In particular, this might be an issue when the data are streamed at a very high
frequency. This methodology is more suited to the case where the observations are received
by batches or where the model doesn’t require regular updates (i.e. when the drift frequency
is small).

3.2.1.2 Incremental and on-line

In this setting, the model (and the associated statistics), are updated with each new observa-
tion without the need to retrain the algorithm from scratch. Thus, the algorithm learned at
time t is a function of the algorithm learned at time t-1 and the current observation (although
the updating function might access to previous observations stored into memory).

Some of the main algorithms based on this structure include CVFDT [47], Salperwyck
et al. [90], Learning vector quantization [59], OnlineTree2 [80], WINNOW [79], MBW [26],
VFDT [29], VFDTc [38] and FIMT-DD [49].

This structure is designed for frequent model updates and when it isn’t necessary to forget
the whole learned model at once, making it particularly useful to handle gradual drifts. One
of the major drawback is that the update of the model will take place one example at a time
and this might end up being too slow in cases were quick adaptation is required. Kuncheva
and Plumpton [68] proposed to use an adaptive learning rate to deal with this issue.

3.2.2 Model Adaptation

When the concept drifts, adaptation is required in order to maintain a high prediction accuracy.
We now discuss some of the main adaptation strategies.
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3.2.2.1 Blind

In this case, the model is updated without explicit detection of concept changes: they are
proactive. Fixed size windows methods discussed earlier are examples of blind adaptation
where the model is continuously retrained with the observations in the window. Gradual
forgetting methods based on fading factors are also an example of blind adaptation.

Some of the main algorithms based on this structure include Widmer and Kubat [103],
Klinkenberg and Renz [58], Aggarwal et al. [1], VFDT [29].

The main advantage of this strategy is its simplicity. It solves the adaptation problem
without needing to develop a complex drift detection module. Furthermore, by avoiding to
wait for an alarm to be triggered, these algorithms can theoretically start updating their
learned model right from the very first observation received after the drift which can make
them more responsive than a model relying on a drift detector (which will need to gather more
evidence of concept changes before triggering an alarm). The downside of course, is that it
leaves the algorithm vulnerable to noisy observations. They might also be too slow in cases
where the model learned must be quickly discarded.

3.2.2.2 Informed

In this case, adaptation of the model is triggered by a drift detector which raises an alarm:
these methods are reactive. The idea is to track a metric of interest (any performance metric,
the distribution of the data received or any other statistic which is specific to the model) and
to assess whether the changes in this metric were caused by a drift or not.

Some of the main algorithms based on this structure include Salperwyck et al. [89], Bifet
and Gavalda [9], CVFDT [47], EWMA [86], FLORA2, FLORA3 [103], Gama et al. [38][39],
Ikonomovska et al. [49], Zeira and Maimon [105], EDDM [12], Kuncheva [65, 66].

One of the major advantage of using a detection mechanism is the additional information
provided. Once a change has been correctly detected, it is indeed possible to characterize and
quantify the extent of this change. This additional information can then be used to select the
update mechanism which is the best suited to handle the drift that just occurred.

The downside is that accurately detecting drifts is a very challenging task. Drift detection
requires to set a threshold parameter for detection. If this threshold is too low, noisy obser-
vation might trigger a false alarm. If the threshold is too high, the change detector might not
be able to detect gradual concepts changes or might react too late1. Furthermore, deciding on
the metric that should be tracked is not necessarily trivial and taking the best action once an
alarm is triggered might also be difficult. For instance, if the metric of interest is the error rate,
a consistently high error rate on the last observations doesn’t necessarily mean that the whole
model should be discarded. Indeed, the latest observations might have been concentrated in
a particular part of the feature space where the predictive power of the model is weak. But
on the other parts of the feature space, the model might still perform well. Therefore in this

1Faithfull and Kuncheva worked on the problem of threshold estimation [33]
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example, it is not obvious which action should be taken as the error rate explode without
further informations.

3.2.2.3 Global update

Global update occurs when the whole model learned is discarded at once and reconstructed
from scratch.

Some of the main algorithms based on this structure include Gama et al. [39], Zeira et al.
[105], Klinkenberg and Joachims [57].

This is a dangerous strategy which requires prior knowledge on the type of drifts in the
considered data stream. Indeed, by triggering this update mechanism the algorithm is exposed
to the issue of catastrophic forgetting, where valuable information would be discarded by
mistake.

A scenario where global update would be well suited would be in the case of reoccurring
concepts with abrupt drifts. If a detector is able to recognize that a model stored in memory
is suited for the current concept, it could select it and would mean that no time is wasting
learning the new concept from scratch, ensuring to get good performances quickly.

3.2.2.4 Local update

In this case, the model is only modified locally and the learned rule is otherwise preserved.
The underlying idea is that updates are only performed when they are required. This implies
that the algorithm has to include a mechanism to track the performance of the learned model
on each parts of the feature space.

Some of the main algorithms based on this structure include CVFDT [47], Ikonomovska
et al. [49].

This strategy is best suited for local concept drifts as it preserves the knowledge acquired
elsewhere. It is a very cautious mechanism which waits for hard evidences to dismiss the
outdated parts of the model. By doing so, it prevents the issue of catastrophic forgetting from
happening. When there are no prior informations about the nature of the drift, it is impossible
to know whether the drift will make the whole model outdated or not. In this case, we argue
that the only option is to gradually adapt the outdated parts of the model as evidences that
they are outdated are gathered.

The downside is that, when there is some prior information about the nature of the drift,
this strategy will be too slow in certain scenarios (e.g. when an abrupt drift makes the whole
model outdated).

3.2.3 Ensemble methods

Ensemble methods maintain a set of models into memory and combine their predictions. The
underlying idea is to create a diversified ensemble of base learners which will compensate for
each base learner weaknesses. The final prediction can be obtained by different aggregation
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methods. One way could be to ask the base learners to vote. When each vote is given the
same weight, the prediction of the ensemble will be obtained by a majority vote. Another
way could be to weight the votes as a function of the recent performances of each base learner
(weighted vote). These weights could evolve over time, ensuring that the base learners which
performed the best recently are given a higher weight.

Kuncheva [64] provided a categorization of ensemble methods for evolving data that we
use here. As the author points out, these categories are not necessarily exclusive and it is
possible to combine them.

3.2.3.1 Dynamic combination

In this case, the base learners are trained in advance and the learned rule remains unchanged
later on. As the concept drifts over time, the base learners are dynamically combined to
respond to the changes by modifying the combination rule. This is usually done with weights
which are adjusted to reflect their expected accuracy.

Some of the main algorithms based on this structure include Hedge β [36], WINNOW
[79, 85], Weighted Majority [73], Blum [16], Tsymbal et al. [99], Widmer and Kubat [103].

Storing a model into memory without updating it at a later stage can obtain very good
results in the case of reoccurring concepts. Indeed, if the algorithm manages to recognize that
a model is already available to deal with the current concept, it can be selected and it won’t
be necessary to gather more observations. By skipping the updating step of the base learners,
this strategy might also have a better running time than other classical ensemble strategies
described below.

This can also prove to be a dangerous strategy when the concepts never reoccur. In this
case, when the new concepts will become too different from the ones which have been used
to learn the models stored in memory, the algorithm will not be able to find the necessary
expertise in its memory to deal with the current concept.

3.2.3.2 Continuous update of the learners

Another way is to allow the base learners to retrain or update their model using the latest
observations received. It is possible to combine continuous update of the base learners with
dynamic combination by also allowing the combination rule to change over time.

Some of the main algorithms based on this structure include On-line bagging and boosting
[81], Kolter and Maloof [60], Rodriguez and Kuncheva [85], Ganti et al. [43], Fern and Givan
[34].

This strategy deals with the shortfalls of the dynamic combination by allowing the base
learners to keep their model updated. This will give the ensemble algorithm even more flex-
ibility to adapt to concept changes, However, this strategy might not work as well as the
dynamic combination in the case of reoccurring concepts as it will need to learn the concept
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from scratch again. Finally, constantly retraining the algorithms with the latest observations
might increase the running time of the algorithm.

3.2.3.3 Structural update

Structural update refers to a strategy where base learners are added and removed from the
ensemble. The criteria used to select the base learner which will be added/removed from the
ensemble could be time (replace the oldest), past performances (replace the loser) or merit to
the ensemble.

Some of the main algorithms based on this structure include Elwell and Polikar [32], Kolter
and Maloof [60], Wang et al. [101], Street and Kim [94], Bouchachia [19].

This is an abrupt adaptation mechanism (as the base learners are abruptly removed and
added from the ensemble).By abruptly deleting a base learner, the algorithm looses the pre-
viously acquired knowledge which could be an issue in the case of reoccurring concepts for
instance. Furthermore, the speed of adaptation of the ensemble is limited by the rate at which
base learners are replaced. For instance, if all the L base learners are outdated and that a new
base learner can be added every X observations, it will take XL observations to completely
forget the outdated concept which might prove to slow in the case of frequent abrupt drifts.

3.3 Conclusion

In this chapter, we have reviewed some of the main mechanisms that can be used in order
to devise an algorithm capable of adapting to concept changes. Each of these strategies has
its own strengths and weaknesses and is suited for a particular scenario. Therefore, the most
important task is to start by identifying if it is possible to get an idea of the types of concepts
drift that will occur on the stream. Once this information has been extracted, it will be much
easier to know which type of algorithm or strategy should be used.

In this thesis, we didn’t make any assumption on the characteristics of the stream or ex-
pected type of concept drifts. In this framework, one way to address this issue could be to
implement a drift detector which automatically detects the type of drift and selects an adap-
tation strategy accordingly. However, as we have discussed in Section 3.2.2.2, drift detection
is a very challenging topic. Instead, we chose to investigate adaptation to concept drifts with-
out explicit detection. Within this framework, we claim that adaptation should happen as a
consequence of hard evidences proving the old model wrong and not because of a temporal
criteria. Finally, when dealing with so much uncertainty, it seems reasonable to allow the
algorithm to abstain from prediction when the reliability of its predictions is too low. We
show that an algorithm can take advantage of the instance based structure in order to reach
theses goals and consequently we investigate these ideas in the in the following chapters.



Chapter 4

Instance-based structure to handle
concept drifts

4.1 Introduction

In this chapter, we show that the instance based (IB) structure is particularly well suited for
the problem of learning on a data stream subject to concept drifts. One of the key advantage is
that, keeping (some of) the past observations into memory brings additional informations such
as: which parts of the feature space have been explored and how well they have been explored.
The second key advantage is that using the IB structure transforms the learning and adaptation
problems into choosing which observations should be saved into memory. Contrarily to most
IB methods which use a simple temporal criterion to select the observations that will remain
into memory (i.e. delete the old observations which are assumed outdated), we use a criterion
based on “conflicting observation” (i.e. as long as there is no new observation which conflicts
with an old observation, the old observation should remain in memory if possible).

In this chapter, we show how these two points can be used by a meta-learning algorithm1.
To this end, we propose a new algorithm which combines ensemble and IB learning: the Droplet
Ensemble Algorithm (DEA). Contrarily to state of the art ensemble methods which select the
base learners according to their performances on recent observations, DEA determines the
regions of expertise of its base learners (BL) in the feature space and dynamically selects the
subset of BLs which is the best suited to predict on the region of the feature space where the
latest observation was received.

The chapter is organized as follows: Section 4.2 describes the Droplets Ensemble Algorithm,
Section 4.3 presents the experimental protocol whereas Section 4.4 show and discuss the results
of the experiments. Finally Section 4.5 concludes.

38



CHAPTER 4. INSTANCE-BASED STRUCTURE TO HANDLE CONCEPT DRIFTS 39

Figure 4.1: Example of map learned in 2 dimensions. Left: before update of the model with
the 6th observation (received at point A). Right: after update of the model with the 6th

observation.

4.2 The Droplets Ensemble Algorithm

Our main goal in designing our new ensemble algorithm dealing with a data stream subject
to concepts drift, is to take into account the local expertise of each of its BL on the region
of the feature space where the latest observation was received. This means that it gives more
weight to the predictions of the BL which demonstrated an ability to predict accurately in
this region.

We propose DEA (Droplets Ensemble Algorithm), an ensemble learning algorithm which
dynamically maintains an ensemble of n BL

(
F =

{
f1, ..., fn

})
along with an ensemble of p

Droplets
(
Map =

{
D1, ..., Dp

})
up to date with respect to the current concept.

The BL can be any learning algorithms, as long as they are able to classify on a data
stream subject to concept drifts.

A Droplet is an object which can be represented as a k -dimensional hypersphere (with k
the dimension of the feature space). Each Droplet Dt is associated with an observation xt
and holds a pointer to a BL: f i (i ∈ {1, ..., n}). The values taken by xt correspond to the
coordinates of the center of the Droplet in the feature space whereas f i corresponds to the BL
which managed to achieve the lowest prediction error on a region of the feature space defined
around xt.

Figure 4.1 shows an example of Map learned where the numbers represent the time step
at which each Droplet has been received.

1We will study the advantage of the IB structure at the base-learning level in Chapter 6.
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Algorithm 4.1 Model Prediction
Inputs: F =

{
f1, ..., fn

}
: Ensemble of base learners,

Map =
{
D1, ..., Dp

}
: Ensemble of existing Droplets,

xt: Latest unlabeled observation,
xconst: Normalization constants
Output: ŷt: Estimated class for xt

xnormt ← Normalize (xt, xconst)
ODt ← Get overlapped Droplets (Map, xnormt )
If (ODt 6= ∅)

Foreach Dh ∈ ODt (h ∈ {a, ..., u})
ŷht ← Predict

(
Dh, xt

)
End Foreach
ŷt ←Majority V ote

(
ŷat , ..., ŷ

u
t

)
Else

Dnn ← Get Nearest Droplet (Map, xnormt )
ŷt ← Predict (Dnn, xt)

End If

We now go through the algorithm in details.

4.2.1 Model Prediction

At time t, upon reception of a new unlabeled observation xt the first step is to normalize the
values of xt according to a vector of normalization constants xconst found on the initialization
step2. Then ODt, the set of Droplets which contains the normalized coordinates of the latest
observation is computed. If ODt 6= ∅, the predicted value for this observation is given by a
simple majority vote of the BL associated with the overlapped Droplets in ODt. On the other
hand, if ODt = ∅, the learner associated with the nearest Droplet Dnn is used for prediction.
For instance, in the left plot of Fig. 1., if an observation is received at the position of point
A, the BL associated with D1 and D2 will be used for prediction whereas if an observation is
received at the position of point B, only the BL associated with D3 will be used for prediction.

The prediction process is summarized in Algorithm 4.1.

4.2.2 Model Update

Once the true label yt associated with the latest observation xt is released, each BL f i (with
i ∈ {1, ..., n}) predicts on the latest observation and the vector of the prediction errors et+1 ={
e1
t+1, ..., e

n
t+1

}
(with eit+1 ∈ {0, 1}) is set aside. The BL are then updated with {xt, yt}.

2This is simply done by computing the average µi as well as the standard deviation σi of each feature on
the initialization set and by transforming the ith feature of xt into

xit−µ
i

σi
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The next step is to search for the BL which will be associated to the new DropletDt. This is
done by summing the prediction errors achieved by each BL on the N nearest Droplets, where
N is a parameter defined by the user. If an unique BL minimizes this sum, it is associated to
the new Droplet, otherwise (if at least 2 BL minimizes the sum of prediction error) the search
space is expanded in turns to the N + 1, N + 2, N + 3, ... nearest Droplets until a single best
performer is found.

The new Droplet Dt is then added to the feature space at the coordinates of xnormt . This
Droplet is given a default radius Rdefault (where Rdefault is a parameter defined by the user),
stores the vector of prediction errors et+1 and creates a pointer to the best BL fk found on
the previous step.

The algorithm then goes through the set of overlapped Droplets ODt and if it is not empty,
it decreases the influence of the Droplets in ODt which have outputted a wrong prediction on
xt. This is done by shrinking their radius which will make them less likely to predict on a
future observation received in this region of the feature space. Formally, for each Droplet u in
ODt :

1. Compute the overlap between Du and the latest Droplet:
Overlappu = Rdefault+Ru−‖xnormu −xnormt ‖ (where ‖.‖ denotes the Euclidean distance)

2. Update the radius of Du: Ru,t+1 = Ru,t − Overlappu
2 .

3. Delete Du if Ru,t+1 ≤ 0.

For instance the right plot of Fig. 1. shows the updated model after reception of an observation
at the position of point A and where the BL associated with D1 outputted a wrong prediction
on the 6th observation whereas the BL associated with D2 predicted correctly.

Finally, a memory management module is ran at each time step to ensure that p, the user
defined parameter for the maximum number of Droplets allowed in memory is not exceeded.
If the memory is full, the algorithm uses 3 different criteria to select the Droplet which will
be removed:

1. Remove the Droplet with the smallest radius.

2. If all the Droplets have the same radius, remove the Droplet which has outputted the
highest number of wrong prediction.

3. If criteria 1. and 2. failed, remove the oldest Droplet.

Algorithm 4.2 summarizes the model update process.

4.2.3 Running time and memory requirements

Running time: Provided that each of the base learner runs in constant time at each time
step, the temporal complexity of both the prediction and update steps of DEA is O (i.p) with
i is the number of observations generated by the stream so far and p the maximum number
of Droplets allowed in memory.
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Algorithm 4.2 Model Update
Inputs: Rdefault: Default radius of a Droplet,
F =

{
f1, ..., fn

}
: Ensemble of base learners,

Map =
{
D1, ..., Dp

}
: Ensemble of existing Droplets,

xt: Latest unlabeled observation,
yt: True label latest observation,
p: Maximum number of Droplets allowed in memory,
ODt: Set of overlapped Droplets at time t
Output: Updated DEA

Foreach f i in F
eit+1 ← Get Prediction Error

(
f it , {xt, yt}

)
f it+1 ← Update Base Learner

(
f it , {xt, yt}

)
End foreach
fk ← Search best base learner (Map, {xt, yt}) , k ∈ {1, ..., n}
Dt ← Create Droplet

(
Rdefault, x

norm
t , fk, et+1, sum errors = 0

)
Map← Add Droplet

(
Map,Dt

)
Foreach Du ∈ ODt

Ru,t+1 ← Update Radius (Ru,t)
If Ru,t+1 ≤ 0

Map← Remove Droplet (Map,Du)
End if

End foreach
If (Card (Map) ≥ p)

Map←Memory Management (Map)
End if
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Space requirements: As previously explained, the maximum number p of Droplets saved
into computer memory is constrained and so is the number n of base learners. This means
that, as long as each of the n base learner constrains its memory consumption at each time
step, the space complexity of DEA will be O (n+ p) which is independent of the number of
observations generated by the stream so far.

4.2.4 Handling concept drifts using the instance based structure

The first key point with this algorithm is that the IB structure allows to use space on top of
time and prediction errors as criteria to weight the BLs. The addition of this extra feature for
the meta-learning algorithm results in learning the BL(s) which is/are expected to perform the
best for each regions of the feature space. These regions are automatically defined according
to the values associated with the past observations and the frequency at which each of these
values has been observed.

Adaptation to concept drifts happens by locally reducing the influence of poorly performing
BLs and associating new Droplets with the BL which achieved the best performances in the
region of the feature space where the latest observation was received.

Note 1: In this case, the meta-learner adapts to a consequence of the concept drift rather
than the concept drift itself. Adaptation to concept drifts is done by the BLs. However, each
BL relies on a model which carries assumptions which might not be suited for the current
concept or for a particular region of the feature space at a given time. Therefore, the meta-
algorithm adapts to the evolution of the best available BL for each region of the feature space.

This raises the second key point with this algorithm: using the IB structure transforms the
learning/adaptation problem into choosing which observations will be saved into memory. This
is an interesting property because we claim that instead of simply relying on the assumption
that old Droplets are outdated (and thus that time should be the criteria used to forget), we
claim that each observation in memory is “good until proven wrong” (and thus that forgetting
must happen based on this idea of conflicting information). Indeed, as long as the base learner
which is associated to a Droplet has not been proved outdated by a better performing BL,
it will be used for prediction, regardless of how old is the Droplet associated with it. The
main advantage of relying on this criterion is that it allows to adapt to concept drifts without
explicitly having to detect them, thus removing a very challenging problem from the adaptation
process.

Note 2: This algorithm bear some resemblance with the IB3 algorithm [4] and Salganicoff
[87] which keep track of the classification performance (i.e. the number of correct and incorrect
predictions) of each observations saved into memory. When a particular observation performs
poorly, it is removed from memory. It should be noted however, that IB3 was only designed
for the incremental learning setting and can’t handle concept drifts.
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4.3 Experimental Framework

In this section, we describe the datasets on which the experiments have been conducted, their
characteristics as well as the experimental protocol used.

4.3.1 Datasets

A total of 25 artificial and real world datasets have been used. These datasets have been
chosen for the diversity of their characteristics, which are summarized thereafter:

Most of these datasets have frequently been used in the literature dedicated to streams
subjects to concept drifts. Also, please note that in this table, an “N/A” value doesn’t mean
that there is no concept drift. It means that, because the dataset comes from the real world,
it is impossible to know for sure the number of drifts it includes as well as their type.

The first 4 datasets from Agrawal to LED have been generated using the built-in generators
of MOA3. A precise description of theses datasets can be found in the following papers [22, 3,
29]. The KDD Cup 10 percent dataset was introduced and described in [97]. Rotating Check
board was created in [32] and the version CB (Constant) dataset was used (constant drift
rate). SPAM was introduced in [54] and Usenet was inspired by [53]. Airlines was introduced
in the 2009 Data Expo competition. The dataset has been shrunk to the first
153 000 observations.

3http://moa.cms.waikato.ac.nz/



CHAPTER 4. INSTANCE-BASED STRUCTURE TO HANDLE CONCEPT DRIFTS 45

Multidataset is a new synthetic dataset created for this paper. Every
50 000 observations, the concept drifts to a completely new dataset, starting with Rotating
checkboard, then Random RBF, then Rotating Hyperplane and finally SEA. In the basic
version, the successive concepts overlap each other whereas in the No Overlap (NO) version
the datasets are shifted and the data are randomly generated on each dataset.

Finally, all the datasets listed after Weather have been retrieved from the repository4 given
in the paper of Losing et al. [75].

All the datasets used as well as the code of the DEA algorithm and the results of the
experiments are available at the following link5.

4.3.2 Benchmarks

We now present some of the state of the art, drift handling algorithms which will be used as
base learners and benchmark.

ADACC was introduced in [51]. It maintains a set of BL which are weighted every τ time
steps according to their number of wrong predictions. It then randomly selects one BL from
the worst half of the ensemble and replaces it by a new one which is protected from deletion for
a few time steps. The final prediction is given by the current best performer. The algorithm
also includes a mechanism to remember past concepts.

Dynamic Weighted Majority (DWM) is an ensemble method introduced in [60]. Each
of its BL has a weight which is reduced in case of a wrong prediction. When a BL’s weight
drops bellow a given threshold, it is deleted from the ensemble. If all the BL output a wrong
prediction on an instance, a new classifier is added to the ensemble.

ADWIN Bagging (Bag Ad) was introduced in [13] and improves the On-line Bagging
algorithm proposed by Oza and Rusell [81] by adding the ADWIN algorithm as a change
detector. When a change is detected, the worst performing BL is replaced by a new one.

Similarly, ADWIN Boosting (Boost Ad) improves the on-line Boosting algorithm of Oza
and Russell [81] by adding ADWIN to detect changes.

Leveraging Bagging (Lev Bag) was introduced in [14] and further improves the ADWIN
Bagging algorithm by increasing re-sampling (using a value λ larger than 1 to compute the
Poisson distribution) and by adding randomization at the output of the ensemble by using
output codes.

Hoeffding Adaptive Tree (Hoeff Tree) was introduced in [11] and uses ADWIN to
monitor the performance of the branches on the tree. When the accuracy of a branch decreases,
it is replaced with a more accurate one.

AccuracyUpdatedEnsemble (AUE) described in [25] maintains a weighted ensemble of
BL and uses a weighted voting rule for its final prediction. It creates a new BL after each chunk
of data which replaces the weakest performing one. The weights of each BL are computed
according to their individual performances on the latest data chunk.

Finally, SAM KNN [75], best paper award at ICDM 2016, is a new improvement method
of the KNN algorithm. It maintains the past observations into 2 types of memories (short and

4https://github.com/vlosing/driftDatasets
5https://mab.to/o5iNvZdhH
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long term memory). The task of the short term memory is to remain up to date according
to the current concept whereas the long term memory is in charge of remembering the past
concepts. When a concept change is detected, the observations from the short term memory
are transfered to the long term memory.

4.3.3 Experimental Setting

The performances of the classifiers will be evaluated according to the 0-1 loss function:
L (y, ŷ) = I{y 6=ŷ} (where I is the indicator function), and the goal is to minimize the av-

erage error
(

1
n

n∑
i=1

L (yi, ŷi)

)
over the n observations received so far.

MOA have been used to conduct the experiments and provide the implementation of the
classifiers. DEA was also implemented in MOA. The code for SAM KNN was directly retrieved
from the link provided in their paper [75]6.

All the parameters of all the classifiers were set to default values (except for the training
period which was set to 100 observations for all the learners and for the number of observations
allowed in memory which was set to 400 for DEA and SAM KNN) and for all the datasets. In
the case of the Droplets algorithm, the default radius was set to 0.1 and the minimum number of
neighbors considered was set to 20 for all the experiments. We used all the algorithms described
in this paper as BL for DEA (they were chosen because of their availability on MOA) with
the exception of SAM KNN and Majority Vote. The simple majority vote algorithm (which
uses the same BL as DEA) was used as a base-line for performance comparison.

Leaving all the parameters to default values for all the datasets is required because there
is no assumptions regarding the structure of the data or the type of drifts the classifiers will
have to deal with. Therefore, it wouldn’t be relevant to optimize parameters that would be
suitable for a particular concept, at a particular time and for a particular dataset.

The goals of the experiments were to compare the performance of DEA against one of the
currently best adaptive algorithm (SAM KNN), assess how DEA was faring against another
ensemble algorithm which is given the same BL (Majority Vote) and assess whether DEA was
able to outperform each of its BL.

For each dataset, the performance of the algorithms was computed using the prequential
method (interleaved test-then-train) described in section 2.4.2.2.

4.4 Results and discussion

The accuracy (percentage of correct classifications) obtained by each algorithm on each dataset
are reported in Table 2. Bold numbers indicate the best performing algorithm. The bottom
2 lines show the average accuracy as well as the average rank obtained by each algorithm on
all the datasets.

The results indicate that DEA managed to obtain the best average accuracy as well as
the best average rank on the 25 datasets considered. In particular, the average rank obtained

6https://github.com/vlosing/driftDatasets
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demonstrates the ability of DEA to perform consistently well regardless of the characteristics
of the dataset and of the type of drifts encountered. This is an interesting property because
it is often impossible to predict how the stream will evolve over time and thus, an algorithm
which can deal with a very diversified set of environments could be useful as it wouldn’t be
possible to pick right from the beginning the algorithm which is the best suited for the whole
dataset.

This good performance also confirms that using the local expertise of the BL as a selection
criteria to decide which subset will be used for prediction should be considered as a way to
improve the performances of an ensemble learning algorithm. Indeed, DEA over-performed
the ensemble learning algorithms which rely on the latest performances to weight their BL
(ADACC, DWM, AUE, ...) as well as a Majority Vote algorithm which simply ask all the
algorithms to collaborate for prediction, independently of the observation received.

4.5 Conclusion

In this chapter, we have claimed that IB learning algorithms had some properties which made
them particularly well suited for the problem of learning on a data stream subject to concept
drift. The two mains properties highlighted here were:
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1. Using the IB structure at the meta level allows to add space on top of time and prediction
error as criteria to weight the BLs of the ensemble. By doing so, it is possible to learn
the area of expertise of each BL in the feature space and use them accordingly.

2. Within the IB structure, use a criterion of “conflicting information” as a forgetting mech-
anism (instead of time to select the observations which should be deleted from memory).
By doing so, it is possible to adapt to concept drifts without explicitly detecting them.

In order to test these ideas, we have proposed the Droplets Ensemble Algorithm (DEA), a
novel algorithm which combines the properties of an instance base learning algorithm with the
ones of an ensemble learning algorithm. It maintains into memory a set of hyper-spheres, each
of which includes a pointer to the BL which is the most likely to obtain the best performance in
the region of the feature space around that observation. When a new observation is received,
it selects the BLs which are likely to obtain the best performance in this region and use them
for prediction. The algorithm adapts to changes by locally reducing the weight of the BLs
which performed poorly and constantly adding new Droplets associated with BLs which are
expected to perform well locally.

The experiments carried on a set of 25 diversified datasets, reproducing a wide variety of
drifts show that our algorithm is able to over-perform each of its base learners, a majority
vote algorithm using the same base learners as well as SAM KNN (one of the currently best
adaptive algorithm) by obtaining the best average accuracy and rank. These results indicate
that our algorithm is well suited to be used as a general purposed algorithm for predicting
on data streams with concept drifts and that the IB structure should be considered when
designing an algorithm learning in this environment.



Chapter 5

Dealing with uncertainties by
abstaining

5.1 Introduction

In this chapter, we investigate the problem of prediction with a reject option in the framework
of data streams subject to concept drifts. Our goal is to assess whether abstaining should be
considered as a way to improve the performances of a drift handling algorithm when costs can
be associated with the outcome of predictions.

To this end, we consider the specific problem of regression with a constraint on the precision
of each predictions; a scenario which can appear in cost-sensitive applications of machine
learning such as medicine or financial forecasting. Concept drifts can diminish the reliability
of the predictions over time and it might not be possible to output a prediction which satisfies
the constraints on the precision. In this case, we claim that if the costs associated with a good
and with a bad prediction are known beforehand, the overall prediction cost can be improved
by allowing the regressor to abstain. To this end, we propose a generic method, compatible
with any regressor, which uses an ensemble of reliability estimators to estimate whether the
constraints on the precision of a given prediction can be met or not. In the later case, the
regressor is allowed to abstain. Empirical results on 30 datasets including different types of
drifts back our claim.

5.2 Framework and proposed method

In this section, we lay down the framework, introduce our problem with a real life example and
propose a generic method aimed at improving the performance of any regression algorithm
able to learn on a stream of data subject to concept drifts. We also discuss the choices made
for the parameters and how we constrain the suitable abstention costs.

49
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5.2.1 Framework

In the supervised regression setting, the goal is to learn a predictor h : X → Y, (with X the
input space and Y ∈ R the output space) capable of generating accurate output predictions
ŷ = h (x) ∈ R for any unlabeled observation x∈ X . Each observation z ∈ Z (with Z = X ×Y)
is generated by a stream which starts emitting observations {zt1 , zt2 , ...} at time t0. Each
observation zt is generated according to a hidden distribution Dt over Z. The distribution Dt
(also referred as concept) can change over time and we will say that the concept Dt that the
predictor is trying to learn, has drifted at time t if Dt−1 6= Dt. When the concept is stable,
the observations are assumed to be i.i.d. realizations of a single concept whereas when the
concept is drifting they are only assumed independent from each other.

The regressor h is further allowed to abstain from prediction, a framework commonly
known as selective regression [104]. In this case, the regressor h is associated with a selection
function g : A → {0, 1} (where the input space A can change from one selection function to
the other) whose meaning is as follows:

(h, g) (xt) =

{
∅ if g (at) = 0

h (xt) if g (at) = 1

where ∅ denotes an abstention on the unlabeled observation xt and where at ∈ A.
The problem considered here is to produce a predictor h (or a predictor associated with a

selection function (h, g)) that minimizes the expected cost from prediction on the n observa-
tions received so far: 1

n

∑n
i=1C (h (xi) , yi) (where C : (Y ∪ ∅)× Y → [0; 1] is a cost function)

under the constraint of a required precision threshold ε. Formally, we define the ε− tube cost
function presented in [55] as:

C0−d−1
ε (ŷ, y) =


0 if |y − ŷ| ≤ ε and g (a) = 1

1 if |y − ŷ| > ε and g (a) = 1

d > 0 if g (a) = 0

where ε is a threshold determined by the problem at hand and d is the cost associated with
an abstention.

Note: The problem considered here shares some similarities with the task of giving predic-
tions intervals [56]. The difference is that, in the case of a prediction interval, the goal is to
estimate the interval into which the observation will fall with a given probability in order to
quantify the uncertainty in the point forecasts whereas here, the interval is constrained by the
requirements of the problem at hand. In both cases though, the performance of the underlying
algorithm is assessed by checking whether the observation falls into the predicted interval.

5.2.2 Real life example

In order to illustrate the problem, we describe the case of an investor which is betting on
a “Binary Tunnel Option”. A Binary Tunnel Option is a financial product that rewards the
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Figure 5.1: Target range (left) and payoff function (right) of a Binary Option Tunnel

buyer of the product if he manages to accurately forecast whether the price of the underlying
asset will be in a given range at the maturity date of the option.

For instance, assume that the current price of stock S is 129€ (see the left hand side of Fig.
5.1). Based on his machine learning algorithm, an investor predicts that the price of stock
S will be ŷ = 132.5€ in 20 days. He can then call a broker and ask him to create a Binary
Tunnel Option for which the thresholds are for instance ŷ− ε = 130€ and ŷ+ ε = 135€ (thus,
in this case, ε = 2.5). If the broker manages to find another investor willing to sell this option,
the first investor can buy the option for a price p (1€ for instance) and will get a profit (for
instance 10€) only if the price of stock S is within the 130€-135€ range at the closing price
in 20 days. Otherwise, if the price of stock S at the maturity date is outside this range, the
investor loses his initial investment (1€). The payoff of the option in this particular example
is shown on the right hand side of Fig. 5.1.

5.2.3 Proposed method

The underlying idea of the proposed method is that by allowing a predictor to abstain, it
is possible to achieve better performances at the cost of a smaller coverage (the proportion
of observations for which a non-empty prediction is given). Therefore, we propose a generic
method which assess whether the constraint on the required precision can be met. When this
is not the case, the predictor is allowed to abstain in order to avoid a costly error.

Note: For the rest of this chapter, “reliability estimate” is used to refer to an estimate of the
prediction error.
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Algorithm 5.1 Generic Method
Inputs: unlabeled observation: xt, predictor learned at previous step: ht−1, ensemble
of reliability estimator:

{
RE1, ..., REm

}
, ensemble of confidence thresholds:

{
q1, ..., qm

}
,

ensemble of inputs specific to each reliability estimator:
{
Q1, ..., Qm

}
, selection function: g

01: ŷt ← ht−1 (xt)
02: r̂t ← Compute REs

(
RE1, ..., REm, Q1, ..., Qm

)
03: at ← Apply Thresholding

(
r̂t, q

1, ..., qm
)

04: if g (at) = 0 then
05: ∅ ← (h, g) (xt) //Abstain
06: else
07: ŷt ← (h, g) (xt) //Predict
08: end if
09: ht ← Update (ht−1, xt) //Update the learned model

5.2.3.1 Method

The full method is detailed in Algorithm 5.1 and is described here: at time t, upon reception of
xt, the predictor ht−1 learned at time t−1 outputs an estimated prediction ŷt. The estimate ŷt
is then set aside. A set of m reliability estimators REi, i = 1, ...,m then associates reliability
estimates r̂t =

{
r̂1
t , ..., r̂

m
t

}
∈ (R+)

m to ŷt where small values of r̂it indicate that the reliability
estimator is confident that the prediction ŷt is close to the target value yt, and large values of
r̂it indicate a lack of confidence.

For each reliability estimator, a confidence threshold qi is set and if r̂it ≤ qi, the prediction
is deemed as reliable according to this reliability estimator. The final decision of each RE(
at =

{
a1
t , ..., a

m
t

})
is then aggregated through a selection function g and the prediction ŷt is

used if the selection function assessed the prediction as reliable. Otherwise, ŷt is discarded
and the predictor abstains for this observation.

Indeed concept drifts can diminish the reliability of the predictions over time and when
the reliability of a given prediction is too small, it might not be possible to output a prediction
which satisfies the constraints on precision required by the problem at hand. In such cases,
abstaining should be considered as a way to improve the overall expected cost.

One major advantage of this method is that the REs do not depend on a particular predictor
and thus can be used with any base algorithm, as long as it is able to deal with concept drift
on a stream. There are, however, some constraints on the REs, as they must be able to
operate on-line, use limited memory, have a low processing time and be able to cope with
non-stationary distribution.

Another advantage of our approach is it relies on an ensemble of REs: Previous empirical
evaluations of existing reliability estimates showed that the best RE depends on the regressor
and on the dataset [17, 24, 98]. These results are of particular interest in the framework of
concept drift, where the characteristics of the dataset can evolve over time. To tackle this
issue, several studies have been carried showing the interest of ensemble approaches [98, 17]
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for the estimation of the reliability of individual prediction. We proposed here to use a simple
majority vote but a different aggregating technique could have been used [18]. Rather than the
choice of a specific ensemble method, the emphasis here is put on being able to reject prediction
estimates with low reliability regardless of the base regressor used and of the characteristics
of the dataset considered.

Building up on these previous findings, the contribution of the proposed method is to show
the necessity to allow abstention when learning on a data stream subject to concept drifts.

Note: At this point, it should be emphasized that the generic method previously proposed
has no impact on the update of the hypothesis h. Whether the selection function g choses to
abstain or predict, the hypothesis h learned after update with the latest observation, is the
same as the one obtained without the selection function.

5.2.4 Setting the parameter’s value

Many of the REs used require to set some parameters. In the framework of concept drift,
setting an appropriate value for the parameter of an algorithm is a difficult task as a given
parameter would only be optimal at a given time [63], for a given concept, on a given dataset
and for a given algorithm. Consequently, we chose to use non optimized parameters which are
set to default values regardless of the datasets or the base learner and the task of optimally
setting parameters is left for future work.

We also applied the same principle for the numerical confidence threshold q of each RE.
As previously stated, each RE is an estimate of the prediction error and thus, because they
evaluate the same value, the same threshold q was used for all the linear REs (ŷ − y) whereas
q2 was used for the REs with a quadratic form (ŷ − y)2. Finally, a value also had to be given
to the confidence threshold q which also depends on the problem at hand. Because each RE
is an estimate of the prediction error, we chose to set ε = q for all the experiments.

Indeed, when ε is small, the problem considered requires a lot of precision and thus the
requirement for being confident on a particular observation should be tougher. On the other
hand, if ε gets larger, the need for precision decreases and thus the requirements on the
confidence estimators should also be looser.

5.2.5 Defining which abstention costs are suitable

Ultimately, the value of d depends on the problem at hand, however, for the remainder of this
chapter, we will set d = 1

2 which is the “worst” abstention cost that we will consider. Indeed,
regardless of the algorithm considered, if d ∈

[
0; 1

2

]
, there exist some cases where abstaining

can improve the performances. Conversely, if d > 1
2 , there are some algorithms for which

abstaining will never improve the performances. For this reason, we restrict our framework to
d ∈

[
0; 1

2

]
and we will choose to never abstain if d > 1

2 .

Proof: The use of the ε− tube cost function transforms a regression problem into a binary
classification problem where the goal at each observation is to predict ŷ ∈ A where A =
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[y − ε; y + ε].
In the binary classification setting, regardless of the problem at hand, the Bayes rule

equipped with the true posterior probabilities, will always minimize the probability of misclas-
sification [28]. For instance, on a given observation x, if the true posterior probabilities are
P (Y = A/X = x) = 0.6 and P

(
Y = Ā/X = x

)
= 0.4 then, the Bayes rule will always predict

the class associated with the highest posterior probability. In this particular example, the ex-
pected cost from prediction is 0.6×0+0.4×1 = 0.4 and abstaining should be considered only if
d ≤ 0.4 (the expected cost from abstaining is always known and is equal to d). More generally,
the worst expected prediction cost is achieved if P (Y = A/X = x) = P

(
Y = Ā/X = x

)
and

is 0.5. Thus, regardless of the dataset considered, if d > 1
2 then the Bayes rule should never

abstain.
Because any algorithm will have a worse misclassification rate than the Bayes rule with

the true posterior rule, the cases where abstaining improves the expected prediction cost of
the Bayes rule will also improve the expected prediction cost of any other algorithm. For
this reason, we restrict our framework to d ∈

[
0; 1

2

]
and more particularly to the “worst” case

d = 1
2 .

5.2.6 Choosing a selection function

For the choice of selection function g, we used a simple majority vote which chooses to use the
initial prediction ŷ only if an absolute majority of reliability estimators marked the prediction
as reliable. Here again, the performances can be enhanced by a wiser choice of selection
function.

5.3 Related work

We start this section by reviewing some of state of the art regression algorithms, able to
adapt to concepts change, process observations upon reception and use limited computer
memory. These algorithms will be used in the experimental section. We then review regression
algorithms which can abstain when a prediction is deemed unreliable. Finally, we discuss why
these algorithms are not suitable to tackle our problem.

5.3.1 Regression algorithms for data stream subject to concept drift

The overwhelming majority of the algorithms able to handle drifting concepts have been
designed to predict in the classification setting. However, a few algorithms have been devised
for the regression setting.

Shaker and Hullermeier [93] proposed IBLStreams, an instance-based algorithm able to
learn under the classification and regression settings. The algorithm is able to autonomously
optimize the composition and the size of the case base. The latest observation is first added to
the case base and then, the algorithm checks whether some of the past observations should be
removed, either because they have become redundant, either because they are outliers. The
recent observations, however, are excluded from removal.
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Ikonomovska et al. [49] developed FIMT-DD, an incremental algorithm for learning
regression trees from data streams. The algorithm is equipped with mechanisms for adaptation
and drift detection which allow the local update of the tree if necessary. In order to constrain
the consumption of memory, a method for disabling bad split points is included.

In [6], Almeida et al. devised AMRules, a rule learning algorithm for regression problems
on data streams where each rule is created as a linear combination of attribute values. Each rule
uses the Page-Hinkley test [82] to detect changes and model adaptation happens by pruning the
rule set. The algorithm also allows to differentiating the importance of the training observation
by the use of weights.

Duarte and Gama [30] proposed Random AMRules, an on-line ensemble method that
combines a set of rules created by the AMRules algorithm. A mechanism prevents the base
models from being correlated by randomly choosing the set of attributes considered for each
base rule. The final prediction of the model is a simple linear combination of the predictions
produced by the base models where the weight of each model can be set either uniformly,
either according to the performance of the base model.

Note: These 4 algorithms are used as a baseline later in the experimental section.

5.3.2 Regression with a reject option

The issue of selective prediction has been abundantly addressed in the classification setting,
however, similarly to the algorithms developed for data streams, only a few models were
devised for the regression setting.

El-Yaniv and Wiener [104] developed a strategy for learning selective regressors which are
guaranteed to achieve ε−point-wise optimality (when the regressor is able to achieve results
which are arbitrarily close the optimal regressor in hindsight, on the set of observations for
which a prediction is given) under the assumption that the observations are i.i.d. realizations
of a static concept D.

Kegl [55] devised MedBoost, a boosting algorithm for regression that uses the weighted
median of base regressors as final regressor. The special case where the base regressors as well
as the final decision abstain is briefly considered.

In [95], a special type of on-line linear regression (Know What It Knows Linear Regression)
is introduced by Strehl and Littman. The authors devised 2 uncertainty measures for the least-
squares estimate and allow the algorithm to abstain from prediction when the confidence in this
estimate is not high enough. Unfortunately, despite its on-line learning ability, the algorithm
isn’t suited to deal with drifting concepts as it assumes that the concept doesn’t change over
time.

The case for abstention in the regression setting also appears within the framework of
conformal prediction [7, 42]. In this framework, it is possible to give guarantees on the accuracy
of an algorithm under the assumption that the observations are i.i.d. realizations of a static
concept D. Unfortunately, this assumption doesn’t hold in the framework of concept drifts.
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5.3.3 Shortfalls of the related works

On the one hand, the existing regressors suited to learn on a data stream subject to concept
drift never abstain from prediction in their current form. On the other hand, the state of the
art algorithms for regression with a reject option have not been devised to operate under a
stream of data subject to concept drifts. Therefore, we propose to improve the performances
of drift handling algorithms by allowing them to abstain.

5.4 Experimental study

In this section, we describe the reliability estimators used, characterize the types of concept
drifts reproduced in the synthetics datasets, describe the experimental protocol as well as the
success metrics.

5.4.1 Description of the On-line Reliability Estimators

We chose to implement 7 of the reliability estimators (REs) presented in the work of Rodrigues
et al. [84] as they are well suited for data streams. Here, rather than the particular reliability
estimates used, the emphasis is on creating a diversified set of REs, suited to operate on a
data stream subject to concept drifts. A brief description of the reliability estimators is given
below the interested reader is referred to the original paper for further details.

Similarity-based reliability estimate: The underlying idea of this estimate is to use
temporal similarity: Given the ordered arrival of observations, it can be argued that the latest
observation xt should be more similar to the “recent” observations {xt−1, xt−2, ..., xt−k} than
the older ones {xt−k−1, xt−k−2, ...}. Thus, if the mean squared error has been low on a sliding
window of recent observations, the RE is confident that the prediction error at time t will also
be low. Formally, the RE is defined as follows:

RMSE =

∑
t∈B (ŷt − yt)2

|B|
where B is the set of the |B| = k most recent observations.

Local Sensitivity: The principle of this RE is to perturb the label associated with the
latest observation and assess to which extent the prediction of the algorithm learned with
the perturbed observation is modified. If there is little difference in the prediction, the RE
is confident that the initial prediction is good. Formally: at time t, upon reception of an
unlabeled observation xt, the algorithm outputs an initial prediction ht−1 (xt) = ŷ0. Two
artificial observations are then created by modifying the estimated label by a value δ1 > 0:
{(xt, ŷ0 + δ1) , (xt, ŷ0 − δ1)}. Two copies h1

t−1 and h2
t−1 of the algorithm ht−1 are then created.

The first copy is trained with the first artificial observation whereas the second uses the
second one. Then each copy computes a prediction ŷδ1 = h1

t−1 (xt) and ŷ−δ1 = h2
t−1 (xt) for

the unlabeled observation xt initially received. This process is repeated k times with different
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values of δ, resulting in a set of 2k predictions A = {ŷδ1 , ŷ−δ1 , ..., ŷδk , ŷ−δk}. The 2 REs derived
from these predictions are:

R1
LSA =

∑k
i=1 (ŷδi − ŷ−δi)

k

and

R2
LSA =

∑
j∈A ŷj

2k
− ŷ0

Dual Perturb and Combine: Conversely to Local Sensitivity Analysis, the idea is to
perturb the attribute values of the latest observation and assess to which extent the prediction
of the algorithm changes. Formally: the algorithm outputs an initial prediction ht−1 (xt) = ŷ0.
A set of k artificial unlabeled observations is then created: ∀i = 1, ..., k : xit = xt + δi with
δi the vector of modifiers δij , one for each attribute dimension j and with δij ∼ N

(
0, σ2

j

)
.

A prediction ŷi is then generated for each artificial observation by computing ht−1

(
xit
)

= ŷi.
The 2 REs derived from these predictions are:

R1
DPC =

∑k
i=1 (ŷi − ȳ)2

k

where ȳ is the average of all the perturbed predictions ŷi, i = 1, ..., k and the original
prediction ŷ0.

R2
DPC =

∑k
i=1 (ŷi − ŷ0)

k

On-line Bagging Sensitivity: Here, the idea is to compare the prediction of the base
model trained with all the observations to the predictions of k multiple versions of the base
model trained with different subsets of the observations seen so far.

R1
BAG =

∑k
i=1 (ŷi − ȳ)2

k

where ȳ is the average of all the predictions ŷi, i = 1, ..., k given by the k models and ŷ0

is the prediction obtained with the base model.

R2
BAG =

∑k
i=1 (ŷi − ŷ0)

k

Values of k and δ: As explained in section 5.2.4, we chose to use a fixed set of parameters,
regardless of the base learner or the dataset. The chosen values are roughly in line with the
values used in the paper of Rodrigues et al. Table 5.1 summarizes the choices made for each
parameter.
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Table 5.1: Parameters used for the reliability estimators
k δ

RMSE 10 -

RLSA 5 δ ∼ N (0, 0.1)

RDPC 10 ∀i, j : δi,j ∼ N (0, 0.1)

RBAG 10 -

5.4.2 Experimental protocol

We used the Java platform MOA [15] which provides an environment for running experi-
ments in the framework of data streams subject to concept drifts. We used 4 regressors
(described in section 5.3.1) which were already implemented in the platform (with the ex-
ception of IBLStream which was developed as an add-on1). The confidence estimators were
directly implemented in MOA.

Similarly to the parameters of the reliability estimates, we chose to use the default values
(set in MOA) of the parameters of each regressor, regardless of the dataset. The underlying
idea remains the same: as we are not allowed to make any kind of assumption regarding the
type of drift encountered, there would be little point in optimizing a set of parameters that
would only be relevant at a given time, on a particular dataset and for a particular concept.

In the case of ε (the value associated with the tube cost function), it was previously stated
that ε is a threshold set before the algorithm is ran and which depends on the problem at hand.
Therefore, in order to simulate different requirements on the precision level, 2 thresholds were
tested on the synthetic datasets:

• The first threshold was assumed to be “low” (i.e. a good prediction is hard to achieve as
the ε−tube is small).

• The second threshold was assumed to be “high” (i.e. it is easier to output a prediction
which is within the ε−tube considered).

The 2 thresholds for ε were determined with hindsight by computing the variance of the target
variable on the whole dataset and using a different multiple of this number for each threshold.

5.4.3 Success Metrics

In order to assess the benefits from abstention, we have computed the percentage of improve-
ment in the overall cost between each regressor and its abstaining version. Formally, for a
given dataset with n observations, we started by computing the absolute difference between
the 2 overall costs achieved:

abs diff =
n∑
i=1

[
C0−d−1
ε (hbase (xi) , yi)− ˆC0−d−1

ε [(h, g) (xi) , yi]
]

1The code for their add-on can be recovered from this link: https://www.uni-
marburg.de/fb12/kebi/research/software/iblstreams
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where hbase is the base version (without a selection function) of the algorithm that predicts
all the time, (h, g) is the abstaining version of the algorithm described in section 5.2.3.1 and

ˆC0−d−1
ε [(h, g) (xi) , yi] =

1

10

10∑
j=1

C0−d−1
ε

[
(h, g)j (xi) , yi

]
is used to denote the average cost achieved by the 10 copies of the abstaining regressor (this
point is explained thereafter) on the particular observation (xi, yi).

Recall that both abstaining and base versions of the algorithm are updated in the same
way and will thus result in the same hypothesis h learned, regardless of the output of the
selection function g. Thus, the 10 copies of the abstaining regressor will have learned exactly
the same hypothesis h but might output different predictions from each other. This is the case
because there is an element of randomness associated with some of the reliability estimators
which we chose to overcome by averaging the results of the 10 copies.

The percentage of improvement from the fully predicting version to the abstaining version
was then computed as:

improvement = − abs diff× 100∑n
i=1C

0−d−1
ε (hbase (xi) , yi)

Thus, on each dataset, a negative value (e.g. -10.3) indicates that the algorithm that was
allowed to abstain managed to achieve an overall cost which is lower (in this case 10.3% lower)
than the base algorithm. Conversely, a positive number indicates that the base algorithm
managed to over-perform the abstaining version.

Note: Because we are comparing the difference of performance of one base algorithm to
his abstaining version, we are guaranteed that this difference can only be attributed to the
decision to abstain (or not) and not by the underlying ability of a particular algorithm to learn
on a given dataset.

5.5 Synthetic datasets

We start by presenting each synthetic dataset and explain why it was used. We then present
and discuss the results achieved. Synthetic datasets are useful to experiment in an environment
where the type of drift can be controlled.

5.5.1 Presentation

5.5.1.1 Drifts of controlled magnitude

Two batches of 10 datasets have been created to assess the effects of drifts with gradually
increasing magnitudes and to “force” local drifts on the feature’s joint density (commonly
known as covariate shift). For each dataset, the dimension of the feature space was set to 2
and the number of observations generated to 1000. A unique drift was introduced at time t501.
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For the first batch, we generated 10 datasets for whichH (Dt500 ,Dt501) = {0.12, 0.2, ..., 0.99}
respectively (H (., .) is the Hellinger distance [45] which is used to measure the drift magnitude
in Section 2.3.2.1). This was achieved by randomly generating 10 000 pairs of multivariate
normal distributions, computing the Hellinger distance for each pair and retaining the 10 pairs
which had the closest value to the desired magnitudes. The first multivariate normal distri-
bution was then used to generate the first 500 observations whereas the second one was used
for the rest of the dataset.

For the second batch, we generated 10 datasets such as

H (ft500 (X) , ft501 (X)) = {0.1, 0.2, ..., 0.98}

with ft (X) the joint density of the features at time t. This was done by generating a random
multivariate normal distribution as the joint law of (X,Y ) before the drift and deducing the
laws2 of X and (Y/X). We then randomly generated another multivariate normal distribution
for the law of X after the drift and the Hellinger distance was computed between the laws of
X before and after the drift. This process was also repeated 10 000 times and the 10 pairs
which had the closest value to the desired magnitudes were kept. We then obtained the joint
density3 of (X,Y ) after the drift by multiplying the original conditional density Y/X with
the new joint density of X. The observations after the drift were then generated with a simple
rejection sampling algorithm.

5.5.1.2 Drifts of controlled type, frequency and area of effect

In comparison to the 2 batches of datasets described previously, these 3 datasets (based on
the Friedman’s function [37]) are useful to assess the effect on the performances of different
types of drifts (gradual, abrupt, local and global) and of different drift frequencies (several
drifts appear on the same dataset).

In this case, there are 10 continuous attributes and their values are independently dis-
tributed with uniform distribution on [0, 1]. The first 5 attributes are used to compute the
target value whereas the last 5 are useless. The basic target value is computed as follows:

y = 10sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 + σ

with σ ∼ N (0, 1) a random number. 3 datasets of 1000 observations were implemented,
following the work of Ikonomovska [48]:

Local expending abrupt drift: In this dataset, 3 local drifts are introduced at times,
t251, t501 and t751. From t1 to t250, the goal is to learn the initial Friedman’s function. A local
drift is then introduced at time t251 such as

∀x ∈ R1 = {x2 < 0.3 ∧ x3 < 0.3 ∧ x4 > 0.7 ∧ x5 < 0.3}
2In this case, X is also a multivariate normal distribution.
3Note that in this case, the joint density (X,Y ) is not necessarily a multivariate normal distribution.

Consequently, there is more diversity in the set of joint densities considered than in the first batch.
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yR1 = 10x1x2 + 20 (x3 − 0.5) + 10x4 + 5x5 + σ

If x /∈ R1, the target value is unchanged. At time t501, a second local drift is introduced on
R2, such as

∀x ∈ R2 = {x2 > 0.7 ∧ x3 > 0.7 ∧ x4 < 0.3}

yR2 = 10cos (x1x2) + 20 (x3 − 0.5) + ex4 + 5x2
5 + σ

and R1 is further expended by removing the last inequality from its definition (x5 < 0.3).
Finally, at time t751, a third local drift is introduced by further expending R1 and R2. In both
cases, the last inequalities from their modified definitions are removed (x4 > 0.7 and x4 < 0.3
respectively).

Global reoccurring abrupt drift: In this dataset, the drifts appear over the whole input
space X . There are 2 drifts at times, t501 and t751. The new target function after the first
drift is

ygl = 10sin (πx4x5) + 20 (x2 − 0.5)2 + 10x1 + 5x3 + σ

whereas it reverts to the initial target function after the second drift.

Global and slow gradual drift: Here, two gradual drifts are introduced at times t501 and
t751. In order to simulate a gradual drift, the observations are generated in parallel according
to 2 different concepts and the sigmoid function is used for the probability of selecting one
concept over the other. At time t501, a new target function is introduced

yglr1 = 10sin (πx4x5) + 20 (x2 − 0.5)2 + 10x1 + 5x3 + σ

and the examples are slowly shifting from the initial target function to yglr1 such as, at time
t750, the probability of selecting the new target function is 1. The same principle apply after
the second drift where the target function

yglr2 = 10sin (πx2x5) + 20 (x4 − 0.5)2 + 10x3 + 5x1 + σ

gradually replaces yglr1 .

5.5.1.3 Comparison between stable and drifting concept

Here the goal was to assess which performances could be achieved when the concept remains
stable and to compare the difference in performance when a drift is introduced on this same
dataset.

To this end, 2 datasets based on the regression version of the hyperplane generator (Shaker
and Hullermeier [93]) have been created. This generator randomly creates a d -dimensional
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Table 5.2: Values used for the ε-tube cost and the confidence thresholds on each datasets
Low ε High ε Size # Drifts

0.1-(X); ... ; 0.99-(X,Y) 0.1 0.75 1000 1

Hyperplane Regression 0.02 0.08 1000 1

Fried Local Expending Abrupt 1 3 1000 3

Fried Global Slow Gradual 1 3 1000 2

Fried Global Reoccurring Abrupt 1 3 1000 2

S&P 500 0.0005 N/A 6692 N/A

CAC 40 0.0004 N/A 6637 N/A

Apple 0.005 N/A 8927 N/A

EUR/USD 0.00005 N/A 2295 N/A

Gold 0.001 N/A 1565 N/A

Hyperplane Regression No Drifts 0.02 0.08 1000 0

hyperplane in a unit hyper-cube. The goal here is to predict the distance of each observation
received to the hyperplane. In our experiment, both datasets have a feature space of dimension
8 and holds 1000 observations.

The first dataset has been generated according to a single stable concept whereas the
second one is strictly identical (i.e. it has exactly the same observations), up to time t501

where a single abrupt drift is introduced. The drift was introduced by generating another
random hyperplane in the hypercube.

5.5.2 Results

The improvements (as defined in Section 5.4.3) achieved on each dataset and by each learner
are presented in Fig. 5.2. As previously stated, a negative value indicates that globally the
performances of the learners were improved by abstaining whereas a positive value indicates
that the performances of the base versions were better. The values used for the ε-tube cost
function, the confidence thresholds, the size of each dataset and the number of drifts included
in them are given in table 5.2.

5.5.2.1 Influence of the drifts type on the performances

Despite the large variety of drifts (global, local, abrupt, gradual, different magnitudes ...)
reproduced, the results of the experiments globally indicate that the proposed method is able
to significantly improve the performances of the underlying algorithm (up to -43% on the
hyperplane dataset) regardless of the type of the drift. This further indicates that abstaining
should be considered when dealing with data streams subject to concept drifts.

Mixed results were achieved when there was no drift at all (on the hyperplane dataset with
no drift), with 3 learners out of 4 for which the performance was significantly improved in the
case of a small ε and only 2 learners out of 4 had better results when ε was high.
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Figure 5.2: Percentage of reduction in the overall cost gained by allowing the algorithm to
abstain. The upper plot is for a low ε whereas the lower plot is for a high ε.
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5.5.2.2 Analysis of the results against the learner used

The improvement in the overall performance can change widely from one learner to the other
(when the dataset and ε are fixed), especially for a small ε. For instance, on the hyper-
plane dataset with one drift, for a small ε, the abstaining version of IBLStream managed to
improve the performances by 43% whereas the performances were only improved by 3% for
AMRulesRegressor. Overall, despite their drift handling capabilities, the proposed method
managed to improve the performances of the 4 algorithms by allowing them to abstain. The
algorithm which in general, benefited the most from abstention was IBLStream whereas the
one that benefited the least was RandomRules.

5.5.2.3 Analysis of the results against the value of ε used

Intuitively, when ε is small, it is harder for the learner to predict within the ε−tube and
thus the number of wrong predictions increases. The results suggest that in this case, the
REs globally managed to filter some of the predictions that would not have met the precision
constrain as the abstaining version over-performed the fully predicting version on most of the
datasets (an overall increase in the cost would have suggested that the predictions filtered
by the REs met the precision constrain). On the other hand, when ε is large, the confidence
threshold increases and most of the predictions are not filtered by the REs anymore. This
leads to overall performances which are globally equal to the performances obtained when
predicting all the time.

In order to further assess the effect that the required precision threshold ε has on the per-
formance of the proposed method, we have conducted an in-depth analysis on the Hyperplane
Regression dataset with one drift using different thresholds
(ε = {0.02, 0.04, 0.06, 0.08, 0.1, 0.15, 0.2, 0.3}). For each ε, the improvement (defined in sec-
tion 5.4.3) was computed. We also added the best (respectively worst) improvement for each
learner, which was computed using the abstaining copy of the learner which achieved the small-
est (respectively largest) overall cost with hindsight. In other words, when computing the value
of abs diff (defined in 5.4.3), ˆC0−d−1

ε [(h, g) (xi) , yi] was replaced by C0−d−1
ε

[
(h, g)j (xi) , yi

]
where the jth copy verifies: ∀k ∈ {1, ..., 10} :

n∑
i=1

C0−d−1
ε

[
(h, g)j (xi) , yi

]
≤

n∑
i=1

C0−d−1
ε [(h, g)k (xi) , yi]

(respectively ≥).
The shape of the curves obtained in Fig. 5.3, further proves that the interest for abstaining

is correlated to the value of ε. The results also show that for half of the tested algorithms,
abstaining never led to worse performances (regardless of the value of ε) whereas for the other
half, there is only a limited range of ε values for which the averaged overall cost increased
(the worst case is 3.78% for ε = 0.1 with IBLStream). Finally, apart from AMRulesRegressor
for which the variability between the abstaining copies was the largest (for ε = 0.02, the
best abstaining copy reduced the overall cost by 9.9% whereas the worst copy increased the
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Figure 5.3: Comparison of the average percentage of reduction in the overall cost as a function
of the value of ε. Error bars indicate the performance achieved with the best (respectively
worst) copy of the abstaining algorithm.
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overall cost by 8%), the variability observed within the abstaining versions of the other learners
remained globally limited.

5.5.2.4 Evolution of the improvement over time

We also studied the evolution of the difference in performances over time between the base
and the abstaining version of an algorithm. We show here the evolution of the results in the
case of the RandomRules algorithm on the 0.9-(X) and Fried Global Reoccurring Abrupt Drift
datasets (respectively upper and lower plot of Fig. 5.4) with a small ε.

To obtain these plots, we started by computing the summed costs of each version of the
algorithm on a rolling (but non overlapping) window of 10 observations. In the case of the
abstaining version, we further averaged the sum. Formally:

sbasek =
k×10∑

i=(k−1)×10+1

C0−d−1
ε (hbase (xi) , yi)

and

ˆsabsk =
1

10

10∑
j=1

sabsk,j

with k = {1, 2, ..., 100}, sabsk,j the summed cost of the jth copy of the abstaining algorithm on

the observations {(k − 1)× 10 + 1, ..., k × 10}. The values shown on each plot are sbasek − ˆsabsk .
Thus, a positive number indicates that the cost of the abstaining algorithm is lower than the
base version whereas a negative number indicates that the base over-performed the abstaining
version.

The plots show that there are periods of time where abstaining clearly improves the per-
formance and periods of time where it makes no difference.

Each RE has its own strengths and weaknesses and is designed to estimate a particular
aspect of what makes a prediction reliable. For instance, the similarity-based reliability esti-
mate will efficiently discard observations leading to a large prediction error when the recent
observations also had a large prediction error whereas the local sensitivity reliability estimate
will use the estimated “flatness” of the values taken by target variable on a small area to decide
whether to abstain or not. Thus, periods of over-performance of the abstaining algorithm are
difficult to explain because they are the result of a combination of factors that led the ensemble
of REs to accurately filter the predictions that would have led to a prediction error larger than
the ε-tube.

These factors can appear under a stationary concept (for instance, between t250 and t400

on the 0.9-X dataset4) and will not necessarily appear because the concept has drifted (for
instance, on the Fried G.R.A. dataset, the gradual drift introduced at t501 left the performances

4Remember that this dataset has an unique and abrupt drift at time t500 and that the concept is stable
before and after.
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Figure 5.4: Evolution of the improvement in performance over time of the RandomRules algo-
rithm on the 0.9-(X) and Fried G.R.A. datasets (upper and lower plot respectively) computed
on a rolling (and non-overlapping) window of 10 observations. Positive values indicate that
the abstaining version over-performed the base version of the algorithm.
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of the base and abstaining version exactly similar up to t650). However, the plots back our claim
that when the concept drifts, allowing the algorithm to abstain can improve the performances
and therefore that it should be considered as a performance enhancing technique.

5.6 Real life datasets with concept drifts

Following up on our introductory real life example presented in section 5.2.2, we ran a batch
of experiments on several financial datasets. These datasets were chosen because they provide
real life examples of streams subject to concept drifts.

5.6.1 Presentation

Each dataset is based on a particular financial asset (a stock, an index of stocks, a precious
metal an exchange rate between 2 currencies) and has 7 attributes. The first 5 attributes are
based on the observation of the opening price, highest price, lowest price, closing price and
volume of transaction for that asset on a given day. For the last 2 attributes, we have added
the average as well as the variance computed with the closing prices of the last 10 days.

Our framework assumes that the observations are independent realizations of a single
hidden concept (when the concept is stable) or independent realizations of a set of concepts
(when the concept drift). In both cases, the observations are assumed to be independent from
each other. Unfortunately, this assumption clearly doesn’t hold in the case of time series where
the value of an observation at time t depends on its value at time t− 1. Therefore, we chose
to transform the time series of the 7 attributes into series of returns which can be assumed to
be independent from each other.

The transformation was done as follows: for a given time series {pt1 , ..., ptn}, we have
computed the return:

rt =
pt − pt−1

pt−1

for each time t ∈ {t2, ..., tn}, where pt is the value of the time series at time t. Thus, at time
t, the learner receives an observation

xt =
{
rOpent , rHight , rLowt , rCloset , rV olumet , rAveraget , rV ariancet

}
and must predict the target variable yt = rCloset+1 .

5.6.2 Results

We give the results achieved on the real life datasets with a small ε (see Figure 5.5) which is
in line with the goal of the investor (the narrower the tube, the larger the expected payout
of the option). All the results indicate that allowing abstention led to an improvement of
the performances and tend to confirm what was observed on synthetic datasets. This good
performance is explained by the increased difficulty to accurately predict on extremely noisy
datasets subject to a wide range of drifts.
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Figure 5.5: Percentage of reduction in the overall cost gained by allowing the algorithm to
abstain. The plot was obtained with a low ε
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In order to concretely describe what these results mean for our investor, we calculate
the amount of money that he would have saved by allowing his machine learning algorithm
(IBLStream) to abstain on the stock of Apple. To this end, we chose to use a cost function
which attributes fixed values to the price and the payout of the created binary tunnel option
as well as the cost of abstaining. In real life, the true price of such option would be calculated
with complicated formulas which depends on many factors (such as the volatility and price
of the underlying asset, the time until expiration, the selected boundaries, ...) and which we
omit for the sake of simplicity.

Therefore and without loss of generality, assume that the investor has an initial capital of
10 000€, that the price of the option is always equal to 1€ (the amount of money lost if the
prediction is wrong), that the payout (i.e. the amount of money received if the prediction is
correct) is always 1€ and that if the investor chooses to abstain, he will leave the money at
the bank which will charge him a fixed 0.1€ overnight. Thus, the cost function is then given
by:

Cε (ŷ, y) =


1 if |y − ŷ| ≤ ε and g (a) = 1

−1 if |y − ŷ| > ε and g (a) = 1

−0.1 if g (a) = 0

In this case the version of the algorithm which predicts all the time managed to output
1483 good predictions and 7437 wrong predictions. This results in a final capital of 4046€.
On the other hand, the abstaining version of the algorithm gave 533 wrong predictions, 162
good predictions and abstained on 8225 observations resulting in a final capital of 8806.5€.
Thus, by allowing its algorithm to abstain, the investor managed to save almost 50% of its
initial capital (note that the performance is better than the -37.4% achieved in the experiment
because the cost of abstention in this illustration is smaller).

5.7 Conclusion

Learning on a data stream subject to concept drifts is a challenging task. Drifting concepts can
significantly diminish the performance of a learner over time and undermine the confidence
in the outputted predictions. In this chapter, we claim that when costs can be associated
with good and bad predictions, allowing a predictor to abstain must be considered in order to
reduce the overall prediction cost (and thus improve performances).

In order to show this, we considered the specific problem of regression whit a constrain on
the expected precision level associated with each prediction. We proposed a generic method
which can be used with any regressor and which filters the predictions that would not have
met the precision constraint.

We experimented this strategy on 30 datasets including different types of drifts, with 4 state
of the art algorithms and with 2 levels of expected precision. We assessed the performance of
our method by comparing the overall prediction cost of the base version of an algorithm (which
predicts all the time) to the performance of the same algorithm equipped with the proposed
method (which allows it to abstain when the confidence is not high enough). Globally, the
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results indicate that when the need for precision is high, allowing the algorithm to abstain
significantly improves the overall prediction cost whereas when the need for precision is low,
the overall prediction cost is the same as the one achieved by predicting all the time.

Furthermore, the evolution of the difference in performance over time between the base
version and the abstaining version of each regressor showed that, concept drifts can be the
cause of an over-performance of the abstaining version and therefore that abstaining must
be considered as an enhancing method to reduce the overall prediction cost. Indeed, when
the required precision level cannot be achieved, allowing the algorithm to abstain based on
an ensemble of reliability estimators acts as an automatic way to “disconnect” the algorithm
during some of these adverse periods.



Chapter 6

Combining instance based structure
and abstention

6.1 Introduction

In this chapter, we build up on the findings of chapters 4 and 5 by combining the instance
based structure with the setting of prediction with a reject option. Our goal is to show that
by merging these 2 properties, it is possible to solve the following problems, listed in the
introduction chapter:

1. Adaptivity to a wide range of concepts changes.

2. Endless improvement of the learned model when the concept remains stable.

3. Achieving superior prediction performances compared to other state of the art algo-
rithms.

The issues of constrained computer memory and computational time are left aside for the time
being and will be addressed in chapter 7.

In order to test this idea, we propose the Droplets algorithm, a novel on-line algorithm
which takes advantage of the meta-informations brought by the instance based structure to
estimate whether abstaining from prediction should be considered or not for a particular
unlabeled observation. When the informations available are judged insufficient to obtain a
reliable prediction, the algorithm automatically abstain from prediction (without the need to
calibrate a confidence threshold). This happens in two cases:

• Either if the observation has been received in a previously unexplored part of the feature
space.

• Either if the observation has been received in a part of the feature space where the labels
of neighboring past observations are in conflict with each other.

72
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Adaptation to concept changes is achieved by using the principle of “conflicting observations”,
which was introduced in chapter 4.

We empirically show that this algorithm is able to outperform 10 of the best state of the
art algorithms on datasets reproducing different types of drifts and that it can accurately spot
the observations which are hard to classify.

6.2 Framework

In this chapter, the considered framework (supervised classification on a stream of data subject
to concept drifts), goal (predict as accurately as possible the label yi associated with xi) and
performance metric (0-1 loss function) are identical to chapter 4 and thus won’t be presented
in details again.

6.3 The Droplets Algorithm

In this section we start by presenting the Droplets algorithm and then discuss its main
strengths and weaknesses.

6.3.1 Presentation

The broad principles underpinning the Droplets algorithm are similar to the ones of DEA
presented in chapter 4. The difference is that DEA is a meta-learning algorithm whereas the
Droplets algorithm is a base-learning algorithm.

Every new observation can be thought as a Droplet falling on a d-dimensional hyperplane
(where d is the dimension of the input space X ), thus the hyperplane corresponds to the
feature space. We will refer to this hyperplane as the “map” for the rest of this chapter. The
“chemical” composition of a droplet is defined by its class and the droplets which belong to
different classes are mutually repulsive, so they can’t cover the same parts of the map.

The first step is to set aside the first N observations received (where N is a user defined
parameter). These observations will be used as an initializing set. Its goal is twofold:

1. Initialize the map with the first Droplets.

2. Estimate the range of values taken by each feature.

Once the minimum and maximum values of each feature on the initializing set have been
determined, a d-dimensional normalization vector

−→
D is computed as follows: For the kth

feature, the kth value of
−→
D will be equal to: max

(
xk1, ..., x

k
N

)
−min

(
xk1, ..., x

k
N

)
.

The map is then updated as follows: At first it is empty. The first labeled observation
(x1, y1) from the initializing set is received and the observed values of its features are normal-
ized (according to the normalization vector

−→
D found beforehand: x1 becomes xnorm1 ). The

normalized observation is then inputed in the map as an hypersphere with a radius of size
Rdefault (where Rdefault is a user defined parameter) and which is centered at the coordinates
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equal to the normalized feature’s values: xnorm1 . The class y1 of this observation is then at-
tributed to this hyper-sphere. The following observations are then released in turn and inputed
in the map in the same fashion.

If at some point the hypersphere of latest observation (xi, yi) overlaps one or more existing
hyper-spheres, the classes associated with the overlapped hyper-spheres are assessed. For
all the overlapped hyper-spheres belonging to yi, the class of the latest observation, nothing
happens. However, for each overlapped hyper-spheres belonging to a class which is different
from yi, the overlap:

λk = Rk +Rdefault − ‖xnormk − xnormi ‖

between the kth droplet and the latest one is computed (where ‖.‖ denotes the Euclidean
distance) and set aside. The identifiers of all of these Droplets are also saved into a list called
indexes. This list holds all the Droplets which should have their radius decreased.

For the first hyper-sphere belonging to the previously created set indexes, the value:

∆1 =
R1 +Rdefault − ‖xnorm1 − xnormi ‖

2
+ ε =

λ1

2
+ ε

used to remove the overlap between this hyper-sphere and the newest hyper-sphere is com-
puted. This value includes an arbitrary small ε > 0 , added to prevent the hyper-spheres from
being tangent. ∆1 is then subtracted to the radius size of this droplet (R1 becomes R1−∆1).
The value ∆2 is then computed for the second hyper-sphere belonging to indexes and so on.
In order to make sure that the latest observation doesn’t overlap with any of the Droplets
belonging to the indexes set, its radius Ri is set to the most restrictive value:

Ri = max (Rdefault −∆max; 0)

where ∆max is the largest value obtained at the previous step. The new Droplet is then
inputed to the map and is centered in xnormi . Finally, the radius of the updated Droplets is
checked and if an hyper-sphere ends up with a radius equal to 0 or less, it is removed from the
map.

Algorithm 6.1 details the updating process of the radii sizes.
This updating process is then repeated each time the label associated with the latest

observation is in conflict with one or more overlapped droplets.
Once the initializing set is over, the first unlabeled observation is received. In order to

output a prediction, the algorithm will simply check if the normalized feature’s values of
the latest observation belong to an existing hypersphere. If this is the case, the algorithm
will predict that they both have the same class, otherwise, the algorithm will abstain from
predicting and wait for the true label to be released. Note that the update of the map doesn’t
start until the true label is released. Algorithm 6.2 gives the details of the prediction process.

Once the true label is released, the update process described previously restarts. The full
algorithm1 is summarized in Algorithm 6.3.

1A video of the algorithm running on the SEA dataset is available here:
https://www.youtube.com/watch?v=M9rBYLD7SkY
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Algorithm 6.1 Update of the radii sizes
Inputs:
indexes: the identifiers of the droplets that should be updated in the map
mapi−1: holds all the Droplets saved into memory at the previous time step
ε : an arbitrarily small positive number
Rdefault: parameter setting the default value of the radius

Foreach:k ∈ indexes
∆k ←

Rk+Rdefault−‖xnormk −xnormi ‖
2 + ε

Rk ← Rk −∆k

End Foreach
∆max ← max (∆1, ...,∆k, ...)
Ri ← max(Rdefault −∆max; 0)
mapi−1 ← Add Droplet to map (xnormi , yi, Ri)
mapi ← Remove unnecessary Droplets from map (mapi−1, Criteria : R ≤ 0)
Return mapi

Algorithm 6.2 Prediction
Inputs:
mapi−1: holds all the Droplets saved into memory.
xnormi : the normalized features value of the latest observation

ŷi ← ∅ //The prediction is initialized as empty
Foreach:k ∈ mapi−1

If ‖xnormk − xnormi ‖ ≤ Rk Then
ŷi ← yk
Return ŷi

End If
End Foreach
Return ŷi
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Algorithm 6.3 The Droplets algorithm
Inputs:
Rdefault: parameter setting the default value of the radius
N : size of the initializing set
ε: an arbitrarily small positive number

−→
D ← Compute normalization constants (x1, ..., xN )
map0 ← ∅ //Initialize the map to empty
Foreach: xi with i ∈ {1, 2, ...}
xnormi ← Normalize observation

(
xi,
−→
D
)

// Prediction step
If i > N
ŷi ← Predict (mapi−1, x

norm
i ) // Algorithm 6.2

End If
// Map update
yi ← True Label of xi
indexes← Get Overlapped Droplets with conflicting labels (mapi−1, x

norm
i , yi)

mapi ← Update radii (mapi−1, indexes,Rdefault, ε) // Algorithm 6.1
End Foreach

6.3.2 Main strengths

In this section, we discuss the main strengths of the Droplets algorithm. In particular, we
articulate the discussion according to the different algorithm structures that were presented
in chapter 3.

6.3.2.1 Adaptation to concept drifts without explicit detection

As explained in chapter 3, some of the state of the art drift handling algorithms rely on a
drift detector in order to trigger the update of their model. Although this adaptation strategy
can potentially achieve performances which are superior to the blind adaptation method, it is
extremely challenging to set up without prior information on how the data stream is expected
to evolve.

For a start, the drift detector has to monitor the right metric: it could track the evolution
of any performance metric of the algorithm like its accuracy, precision or recall over time. It
could also track the evolution of any statistic associated with the observed data themselves
like their mean value, variance, or their empirical distribution. The issue is that, a drifting
concept might trigger one of these metric without triggering the others which make the choice
of which one to monitor very difficult without prior information.

Even in the case where the detector accurately detects a drift, for instance, following
an explosion in the error rate, the obtained information might not be enough to deliver an
appropriate response. Indeed, the explosion of the error rate in itself might not be sufficient
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to decide whether the whole model should be discarded or if it is simply necessary to get rid of
some parts of the model (where the latest observations might have been received for instance).

Furthermore, assuming a proper metric has been found, a value will have to be associated
with the trigger which will result into an additional parameter which can be hard to calibrate.
For instance, if the drift detector relies on two windows (a short term one and a long term
one) and monitor the estimated distributions of the observations on each of these window to
trigger an alarm when these distributions are too different, the chosen parameter might be
either too high and risk missing gradual drifts or too low and risk being triggered by noisy
observations.

Therefore, in the general case where we no assumption about the nature of the future drifts
can be made, an algorithm able to adapt to any type of drifts without explicitly detecting them
seems better suited than an algorithm designed to handled some particular drifts. This also
has the advantage of resulting in a simpler algorithm as a drift detection module isn’t required.

6.3.2.2 Automatic abstention on tricky observations

By limiting the influence of each Droplets, the algorithm is prevented from making clue-
less assumptions on parts of the feature space that wouldn’t have been explored previously.
Instead, it will only predict when more information will be made available in this region.

In the second case, the reception of Droplets with conflicting labels on a particular part
of the feature space will lead to their radii being diminished which in turn will create blank
spaces on the map. This reflects a zone of uncertainty where the algorithm will also abstain
until more information is received.

As a consequence, the algorithm will be able to distinguish which observations are poten-
tially hard to classify and can abstain from predicting in those cases and will automatically
focus on the other observations, further increasing the confidence that the end user can put in
the predictions. This feature has been obtained because we made use of the meta-informations
brought by the instance based structure, which we claimed was well suited to handle data
streams subject to concept drifts.

Although to our knowledge, none of the existing drift handling algorithm has been explic-
itly designed to abstain from predicting after reception of an unlabeled observation. Some
algorithms (like Boosting [key-19]) associate a degree of confidence with their predictions,
leaving to the end user the task of setting a meaningful threshold above which he/she is
willing to trust the algorithm. However, as we have seen in the previous section, setting a
relevant parameter might not always be easy and the use of a fixed value can be questioned
when dealing with non-stationary environments which often require flexibility in the value of
the parameters. Furthermore, most of the algorithms producing confidence estimates of their
prediction rely on the assumption that the distribution linking the observations to their class
is stationary. This assumption doesn’t hold when concept drift occur and hence the validity of
the confidence estimate produce can be questioned. Therefore, an algorithm which can abstain
without having to explicitly specify a confidence threshold could prove to be very useful in an
evolving environment.
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6.3.2.3 Forgetting observations which have been proved wrong

As discussed in chapter 4, the instance based structure also allows to use a criteria of “conflict-
ing information” to decide which observations should be deleted from memory. This means
that the adaptation process is based on hard evidences of past observations having been proved
wrong instead of just assuming that they should be deleted because they are old (which is
what most of the algorithm presented in chapter 3 do).

A consequence of this forgetting mechanism is that the algorithm isn’t forced to keep
temporally contiguous observations into memory. Indeed, it isn’t clear why an algorithm
should be forced to keep contiguous data, especially in the cases of noisy observations or
reoccurring concepts. In the particular case of non-overlapping and reoccurring concepts, this
means that the observations associated with past concepts won’t be forgotten and that the
learned model will be available as soon as the concept reoccurs.

6.3.2.4 Flexible structure allowing to learn a wide range of concepts

Because of the very limited assumptions they make about the nature of the concept they are
trying to learn, instance based methods are well suited to learn a very wide range of concepts.
This is very useful because in the general setting the characteristics of the future concepts
can’t be predicted and consequently, a great flexibility is required.

6.3.2.5 Implicit handling of appearing/disappearing classes

Finally, although it wasn’t one of the initial requirement of this thesis, the Droplets algorithm
doesn’t require any previous information about the classes that will be encountered and thus
can naturally adapt to appearing and disappearing classes.

6.3.3 Identified weaknesses

We now review the identified weaknesses of the Droplets algorithm.

6.3.3.1 Curse of dimensionality

Like the majority of instance based methods, the algorithm could suffer in high dimensions
due to the increased volume of the map that needs to be filled by hyper-spheres. Because of
its cautious handling of observations received in previously unexplored parts of the feature
space, high dimensions won’t necessarily result in a decrease of the prediction performance of
the algorithm but will significantly reduce its coverage.

In this case, one solution could be to feed the algorithm with more data. Another solution
has been proposed by T. Hastie and R. Tibshirani [44] in the case of the KNN which could
be adapted to our algorithm. A third solution could be to use algorithms which would shrink
the dimension of the feature space.
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6.3.3.2 Initial normalization step doesn’t scale well

The normalization step that takes place during initialization can be troublesome in some cases.
Indeed, using the observed maximum and minimum values of each features on the initializing
set to determine the normalization vector can make the algorithm sensitive to outliers. A
simple way to deal with that issue would be to compute the observed mean and standard
deviation for each feature and use these values for normalization. This method is described in
details in section 4.2.1.

Furthermore, setting the normalization vector to a constant value can also be problematic
in cases where the range of values taken by each feature changes from one scale to another.
For instance, if the observed values of the first feature on the initialization set are uniformly
distributed on the [−10; 10] set, the normalization constant found (and thus the default radius
size) with this set might not remain relevant if the range of values later becomes very large
(i.e. uniform distribution over

[
−1010; 1010

]
), which will lead to a radius size which is too

small and in turns to many blank spaces. Conversely, if the range of observed value becomes
very small (i.e. uniform distribution over

[
−10−10; 10−10

]
), it will lead to an over-sized radius

size where the Droplets will constantly overlap each other and where the algorithm will not
be able to learn accurately the concept. We haven’t yet studied this type of drift which has
been left for futures researches.

6.3.3.3 Setting a proper parameter value is difficult

The Droplets algorithm has only one parameter. However, finding a suitable value for the
default radius size can also prove difficult. As we have advocated in this thesis, in the frame-
work of data streams subject to concept drifts, the value giving the best results for a given
parameter might change over time. Therefore, the idea of setting an unique value for the
default radius size could be challenged.

We haven’t worked on this particular issue. The answer probably lies in adaptive param-
eters.

6.3.3.4 Trade-off between slow computational time and insufficient information

Another weakness coming from the instance based structure is that, by keeping (some of the)
past observations into memory, the prediction step is likely to become increasingly slow as the
number of observations kept into memory increases. This is because the algorithm requires to
go through the observations saved into memory in order to build a predicting model on the
fly. In cases where the data are streamed at a very high frequency, this could prove to be an
issue.

One way to deal with this issue would be to constrain the number of observations kept
into memory which will have the effect of setting an upper bound on the computational time.
However, constraining the number of observations into memory can also decrease the quality
of the model learned, especially in high dimensions where a lot of observations are required in
order to accurately learn the concept. This problem is specifically addressed in chapter 7.
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6.4 Experimental Framework

In this section, we describe the datasets on which experiments have been conducted, the drifts
they include and the experimental protocol.

6.4.1 Datasets and experimental protocol

We decided to include both semi-artificial and artificial datasets and tried to cover different
types of drifts (abrupt, incremental and reoccurring).

Evaluation procedure: In order to assess the predictive performances of the classifiers at
every single time step, we used the experimental protocol presented in [19]. This is a slightly
modified version of the classical interleaved test-then-train evaluation procedure: For each
dataset, a set of 1 000 temporally indexed observations is generated (xi, yi) , i ∈ {1, ..., 1000}.
Then, for each time step i, 500 observations have been randomly generated according to the
concept in force at that time:

{(
x1
i , y

1
i

)
, ...,

(
x500
i , y500

i

)}
. The classifiers are then trained on

(xi, yi) , i ∈ {1, ..., 1000} but their accuracy at each time step i is assessed on{(
x1
i , y

1
i

)
, ...,

(
x500
i , y500

i

)}
. The initializing set is composed of the first 100 observations

(xi, yi) , i ∈ {1, ..., 100} and the test set composed of the remaining observations (xi, yi) , i ∈
{101, ..., 1000}.

This evaluation procedure means that the performance of each algorithm is evaluated on
900 × 500 = 450000 observations per datasets. The advantage is that it gives a much more
reliable idea of the accuracy of the classifiers at a given time than what would have been
obtained with only one observation. The drawback is that it forces the use of datasets where
the user can generate the labeled observations for each time step.

In order to have full control over the generating process of the observations, we used our
own implementation of all the datasets described bellow.

Random RBF: This dataset was initially introduced in [13]. The idea is to generate a
fixed number of centroids in d-dimensions where each center will be characterized by random
coordinates, a random standard deviation, a particular class label and a random prior proba-
bility of being selected. The new observations are then randomly generated according to the
previous parameters. Drifts are introduced by offsetting the coordinates of the centers in a
random direction according to a Gaussian distribution with zero mean and a given standard
deviation.

We used 3 Random RBF datasets, two for incremental drifts: RBF2 with 6 classes, RBF3

with 30 classes and 12 dimensions and one for abrupt drifts: RBF1 with 3 classes. In the
case of incremental drifts, the centroids are offset at each time step. In the case of abrupt
drifts, there are 4 different concepts evenly distributed on the dataset (the drifts happen at
t = {250, 500, 750}). In each cases the data were generated without noise and constrained in
a [0, 10]2 square (or hyper-cube for RBF3).
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Rotating Hyperplane: This synthetic dataset was initially introduced in order to assess
the performance of CVFDT against VFDR in [47]. The idea is to generate the data uniformly
in a d-dimensional hyperplane according to the following decision boundary

d∑
i=1

wixi = w0 =
d∑
i=1

wi

with xi the ith feature and wi the weight of this feature. If the left hand part of equation (8)
is superior or equal to w0 the label of the observation will be positive and negative otherwise.
Concept drifts are introduced by changing the weights. d was set to 2 and some noise has
been added to the dataset by randomly switching the class of each observation with a 15%
probability. The abrupt drifts happen at times t = {166, 332, 498, 664, 830}.

Weather Temperatures: This dataset is composed of one feature and 3 classes, created out
of the historical temperatures of the city of Paris2 from the 17th of January 2006 to the 15th
of December 2014. 3 temperatures are available: the highest, lowest and average temperature
of each day. After removing the outliers from the data, the average of the highest and lowest
temperatures for each day of the year have been computed (the average of the highs and lows
of every 1st of January, 2nd of January and so on ...). This gives 2 bands that are used as
decision boundaries. If the observed temperatures is above the average of the highs it will be
given the class “warm”. The temperatures below the average of the lows will be labeled as
“cold” and the ones in between “medium”.

The underlying idea is to reproduce incremental, reoccurring drifts. In order to keep the
size of the dataset consistent with the other datasets, only the first 1000 observations starting
from the 17th of January 2006 were kept. For each day, 501 observations were generated by
uniformly drawing temperatures between the maximum and the minimum observed that day.

6.4.2 Benchmarks

We now present some of the state of the art, drift handling algorithms which will be used as
benchmarks.

DWM (Dynamic Weighted Majority) [60] is an ensemble method able to dynamically add
or remove on-line learners, weighted according to their past performances. The predictions
are given by a weighted-majority vote of the learners.

Learn++.NSE [32] is an incremental ensemble classifier based on the same ensemble struc-
ture as DWM. Its novelties lie in the mechanism used to weight the vote of the classifiers.
Here the weights are dynamically updated according to the classifier’s current and past error
and in its passive drift detection mechanism.

Accuracy Updated Ensemble [25] also has a similar structure as DWM but processes the
observations in chunk. One novelty is that after each data chunk it replaces the worst per-
forming classifier by a new one, trained on the latest data chunk, no matter how good the

2The data can be downloaded at the following address:
http://www.wunderground.com/personal-weather-station/dashboard?ID=I75003PA1.
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worst performing one is. Another novelty is that the weights of each classifiers are now up-
dated according to their prediction error and the mean square error of a randomly predicting
classifier on each data chunk instead of simply decreasing their weight according to a pre-set
parameter. Finally, it is equipped with a memory surveillance module that prune the Trees
when the memory limit is reached.

DACC (Dynamic Adaptation to Concept Changes) [50] has been proposed as an ensem-
ble algorithm able to adapt to concept changes. It is also based on the same principles as
DWM in the sense that it also maintains a set of on-line learners, weighted according to their
performance. One improvement is the deletion strategy which doesn’t delete automatically
the worst performers of the ensemble but select them randomly from the worst performing
half of the committee. Another improvement is the final vote which instead of using a simple
weighted vote, rely either on a weighted vote of the learners with weights belonging to the
upper half of the committee either on the prediction of the best performer of the ensemble.

On-line Bagging [81] is an extension of the well known Bagging algorithm [23]. The authors
noticed that when the size of the training set tends to infinity, the number of occurrence of each
example in the training set tends to a Poisson(1) distribution. Thus, in an on-line framework,
for every new example each base model is trained k times with k ∼ Poisson(1). The prediction
is performed in the same way, by taking an unweighted vote of the base learners.

ADWIN Bagging [13] adds ADWIN (ADaptive sliding WINdow) [10] in order to detect
changes and to estimate the weights in the On-line Bagging [81] algorithm.

Leveraging Bagging [14] has been proposed as an improvement of On-line Bagging [81].
The authors managed to improve the On-line Bagging algorithm by randomizing even more
the classification process. Instead of using λ = 1 in the Poisson(λ) distribution to generate
the weight of each new example, they use a larger value of λ. Their claim is that, by doing
so, they increase the diversity of the weight given to every new example and thus modify the
set on which the base classifiers will be trained. The second improvement comes from the use
of output codes in order to add randomization at the output of the ensemble. According to
them, the main benefits of this process are that it can reduce the effects of correlations between
classifiers and further increase the diversity of the ensemble. Finally, they use ADWIN [10] to
detect changes in error of the classifiers and replace the worst performing by new ones.

On-line Boosting [81] is designed to extend the AdaBoost.M1 algorithm [35] to the on-
line framework. It is similar to On-line Bagging [81] except that it increases (respectively
decreases) the parameter λ associated with the Poisson distribution for the next base learner
if the latest example has been misclassified (respectively correctly classified).

Hoeffding Adaptive Trees [11] is an extension of the Hoeffding trees [46]. Hoeffding trees
was initially developed in order to cope with a potentially infinite stream of data under the
assumption that the distribution of the data wouldn’t change. Hoeffding trees has been im-
plemented in VFDT (Very Fast Decision Trees) with the addition of some heuristics. CVFDT
(Concept-adapting Very Fast Decision Trees) [47] was developed as an extension of VFDT able
to deal with change of concept. Finally, Hoeffding Adaptive Trees were developed to further
improve CVFDT by getting rid of the parameter governing the size of the sliding window of
instances. Instead of that, it uses ADWIN as a change detector to remove and replace the
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branches of the tree with poor accuracy.

6.4.3 Implementation of the algorithms

MOA3 and its extension4 have been used to conduct the experiments and provide the imple-
mentation of the classifiers. All the parameters of the classifiers were set to default. This
is required because there is no assumptions regarding the structure of the data or the type
of drifts the classifiers will have to deal with. Therefore, it wouldn’t be relevant to optimize
parameters that would be suitable for a particular concept, at a particular time and for a
particular dataset. In the case of the Droplets algorithm, the default radius was set to 0.1 for
all the experiments. We also added the KNN algorithm with a fixed parameter of K=1 as a
baseline.

6.5 Results and discussion

The results of the experiments empirically show the following facts:

1. Overall, the Droplets algorithm manages to obtain a better prediction performance than
other state of the art adaptive learners, regardless of the type of drift encountered.

2. The prediction performance of the algorithm improves when the concept remains stable.

3. The algorithm manages to provide reliable predictions by discarding potentially difficult
observations without relying on a fixed confidence threshold.

6.5.1 Consistently high and stable accuracy

In order to assess the performances of the Droplets against other algorithms, the results have
been decomposed in two tables: the performances of the algorithms on the observations where
the Droplets gave a predictions and their performances on all the observations where the
Droplets didn’t predict. The underlying idea is to avoid producing misleading results with a
table reporting the overall accuracy on the test set where the Droplets could have achieved a
very high performance at the cost of a very high proportion of unclassified observations (e.g.
a performance of 100% by classifying correctly a single observation).

Table 6.1 shows the average accuracy (in percentage) of all the classifiers on the observa-
tions where the Droplets algorithm gave a prediction. The performance of the algorithms on
the observations for which the Droplets algorithm abstained from prediction are shown and
discussed in the following section.

The last line of the table indicates the percentage of unclassified observations by the
Droplets algorithm on each dataset. Bold numbers indicate the best performing algorithm
for each dataset.

3http://moa.cms.waikato.ac.nz/
4https://sites.google.com/site/moaextensions/
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RBF1 RBF2 RH Temp RBF3 Avg Acc Avg Rank
Droplets 86.32 74.20 77.65 84.27 100.00 84.49 1.6
DWM 73.90 69.40 77.16 69.11 97.36 77.39 5.2
Leveraging Bagging 79.17 74.88 71.94 72.36 96.18 78.91 4.0
Hoeffding Adaptive Trees 67.61 73.74 69.95 65.10 95.22 74.32 7.6
ADWIN Bagging 78.32 73.89 72.64 68.00 95.59 77.69 5.2
Online Bagging 72.29 73.87 69.68 66.55 95.41 75.56 6.8
Online Boosting 81.58 73.35 73.92 69.10 99.03 79.40 4.2
Accuracy Updated Ensemble 20.34 42.75 59.57 34.29 29.87 37.36 10.8
Learn++.NSE 40.07 60.44 65.67 43.29 2.05 42.30 10.0
DACC 88.97 71.08 79.25 80.40 98.75 83.69 3.0
1-NN 68.07 62.91 64.56 56.23 100.00 70.35 7.4
Unclassified observations (%) 15.05 33.62 24.89 5.98 98.15 - -

Table 6.1: Average accuracy (in percent) on the observations for which the Droplets gave a
prediction

The results show that Droplets algorithm managed to get the top spot twice out of 5
datasets. The average accuracy and the average rank indicate that overall, the algorithm
has a steady performance compared to the other classifiers. Indeed, although some classifiers
managed to obtain better performances on some datasets (DACC for instance outperformed
the Droplets algorithm twice), their average accuracy and rank show that they are not able to
perform consistently well, regardless of the dataset at hand or the type or drift encountered.
This shows that, when the algorithm is confident enough to predict, it is capable of performing
consistently well regardless of the characteristics of the environment it is learning from. This
is a useful property because, in the general framework where there is no prior information on
how the dataset at hand will evolve over time, it means that the Droplets algorithm is well
equipped to adapt to a very broad range of drifts.

Note that the performance achieved on RBF3 is an extreme case where the algorithm man-
aged to get the perfect score at the cost of 98.15% of unclassified observations. The perfect
score was achieved because of the high dimensions: the incrementally moving centroids never
overlapped each other, which never gave the opportunity to output a wrong prediction. On
the other hand, the very high percentage of unclassified observations comes from a perpetual
discovery of unexplored parts of the map.

In order to assess the stability of the performance of the Droplets algorithm against the
set of observed data, we re-runed the algorithm 45 times on each dataset. For each time step
i, we randomly switched one of the 500 observation tji with ti. This means that the concept
at a given time doesn’t change compared with the experiments previously carried, but that
the observed data (which will be used to update the model), representing this concept is now
a different one. This has the effect of completely modifying the set of observations on which
the algorithm learns. Table 6.2 gives an overview of the mean and variance achieved for the
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RBF1 RBF2 RH Temp RBF3

Accuracy 87,79±0,31 73,32±0,36 77,47±0,40 84,28±0,37 100±0.00
Unclassified 15,43±0,91 34,12±1,89 25,23±3,13 5.00±0,34 98,15±0,01

Table 6.2: Average performance and variance of the Droplets over 45 runs

accuracy and the percentage of unclassified observations.
Here again, the results indicate that the performances of the Droplets algorithm are very

stable as there is little variance in the observed accuracy and percentage of unclassified obser-
vations over the 45 different datasets. In particular, this shows that the learned model doesn’t
over-fit the past observations.

6.5.2 Reliable predictions under concept drift

In this section, we assess whether the only parameter of the Droplets algorithm (Rdefault, the
default radius associated with a new Droplet) acts as a confidence threshold or not and whether
the observations on which the algorithm chose to abstain were indeed harder to classify.

6.5.2.1 The radius size doesn’t act as a confidence threshold

In the selective classification framework, there is generally a trade-off between risk and coverage
[106] (the accuracy of the algorithm improves as the percentage of classified observations
diminish and the other way around) and the performance of this type of classifier is usually
assessed against the curve connecting these 2 quantities. Figure 6.1 shows the evolution of
the percentage of accurate predictions along with the percentage of unclassified observations
as different values are given to the Rdefault parameter (from 0.02 to 0.38 with a step of 0.04).

The results indicate that the parameter’s value yielding the best accuracy is also the one
minimizing the percentage of unclassified observations, regardless of the dataset and of the
type of drifts encountered. The shape of the curve also shows there isn’t a trade-off between
accuracy and coverage because the accuracy of the Droplets increases with the coverage. This
leads to draw the conclusion that the parameter governing the default radius size doesn’t act
as a confidence threshold.

This is an important property because a confidence threshold is parameter which is hard
to calibrate. Indeed, it could be unclear whether an accuracy of x% and a coverage of y%
would be better or not than an accuracy of y% and a coverage of x%. In this case, because of
the absence of trade-off between these two quantities, the user of the algorithm simply has to
optimize this value to end up with an unique best value.

The default radius sizes that gave the best results (i.e. the highest accuracy and the lowest
rate of unclassified observations) are respectively 0.22, 0.1, 0.18 and 0.1 for RBF1, RBF2, RH
and Temperatures.
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Figure 6.1: Evolution of the accuracy against the percentage of unclassified observations for
different default radius
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RBF1 RBF2 RH Temp RBF3 Avg Acc Avg Rank
DWM 50.76 51.30 72.65 53.39 86.64 62.95 3.8
Leveraging Bagging 46.74 55.86 63.65 46.53 87.03 59.96 4.6
Hoeffding Adaptive Trees 44.72 54.94 60.77 48.55 86.37 59.07 6.0
ADWIN Bagging 49.09 55.05 64.34 50.70 85.40 60.92 4.2
Online Bagging 43.29 55.03 63.59 49.60 85.38 59.38 5.8
Online Boosting 52.50 54.80 65.26 55.72 88.37 63.33 3.0
Accuracy Updated Ensemble 25.22 37.18 54.84 32.43 31.78 36.29 9.4
Learn++.NSE 26.57 47.00 52.97 36.54 2.93 33.20 9.0
DACC 70.57 50.83 75.85 66.36 88.99 70.52 2.4
1-NN 37.55 42.99 54.87 49.31 98.30 56.60 6.4

Table 6.3: Average accuracy (percentage) on the observations where the Droplets algorithm
didn’t predict

6.5.2.2 Ability to accurately discard the tricky observations

Table 6.3 shows the accuracy achieved by the other algorithms on the observations for which
the Droplets algorithm chose to abstain. Bold numbers indicate the best performing algorithm
for each dataset.

The results show that the Droplets managed to successfully discard the observations which
were harder to classify. Indeed, except in the case of the algorithms that were already per-
forming poorly on the observations where the Droplets predicted (AUE on RBF1, RBF3 and
Learn++.NSE on RBF3), the performance of all learners decreased on the observations which
were unclassified by the Droplets algorithm. This result suggest that, by choosing to abstain
when an observation is received in a previously unexplored part of the feature space, or when it
is received in an area where the labels of neighboring observations are in conflicts, the Droplet
algorithm managed to capture an important aspect of what makes a prediction reliable.

It could be argued that, despite achieving a worse performance on these observations, the
achieved accuracy of some of the algorithms remains good enough in some cases (e.g. DACC
achieved almost 89% on RBF3). Ultimately, it will be up to the end user to decide whether
the problem at hand requires the highest possible accuracy and if he is willing to sacrifice
coverage for this. Here we claim that when the goal is to obtain stable and high performances,
the Droplets algorithm should be considered.

Note that on these observations, a majority of classifiers didn’t even manage to outperform
by at least 5% a simple 1-NN on RBF3 and Temperatures datasets.

The bottom part of Figure 6.2 shows the evolution of the accuracy of the top 4 classifiers
on the RBF1 dataset. The displayed accuracy has been obtained by computing the percentage
of accurate predictions for each of the 500 observations tested at every time step.

Despite being one of the dataset were the Droplets algorithm performed the worst, the
results show that it managed to recover quickly from the abrupt drifts. The shape of the curve
also indicate that the performances of the Droplets algorithm continuously improve when the
concept remains stable which was one of the requirement of the introduction chapter of this
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thesis.
The top plot of Figure 6.2 shows the percentage of unclassified observations over time.

This reflects the uncertainty of the Droplets algorithm over time. In the particular case of the
RBF1 dataset, the observations are constrained in the unit hypercube. Therefore, once the
initializing set is over, the map will have been extensively explored and new observations are
unlikely to appear in previously unexplored parts of the map. This means that the observed
increase in uncertainty reflects the fact that observations with conflicting labels where received.
As is expected, this uncertainty explodes right after the drift, and gradually goes down as more
information is accumulated over time.

An idea for futures research would be to use the evolution of this uncertainty as a drift
detector.

6.6 Conclusion

In this chapter, we have claimed that an on-line algorithm combining the instance based
structure with the framework of prediction with a reject option would manage to obtain good
predictions performances on a data stream subject to concept drifts (which was the main goal
presented in the introduction chapter).

We claim that the instance based structure brings meta informations which can be taken
advantage of when dealing with drifts. We have already demonstrated that point in chapter 4
for the meta learning level and showed in this chapter that this is also true at the base learning
level.

Furthermore, when dealing with the uncertainty associated with evolving environments,
an algorithm outputting reliable predictions can prove particularly useful, especially when
wrong predictions are costly. In this case, the instance based structure can also be used to
automatically filter the observations which are harder to classify.

In order to implement these ideas, we have introduced the Droplets algorithm, which
shares some similarities with DEA presented in chapter 4. This algorithm keeps track of the
past observations and choses to forget the observations which have proved to be outdated. It
can deal with a broad range of drifts (abrupt, incremental or reoccurring) without needing
to explicitly detect them and produces reliable predictions by abstaining from predicting on
potentially difficult observations without relying on a fixed confidence threshold (which would
be hard to calibrate and would induce a trade-off between coverage and accuracy).

Experimental results show that the Droplets algorithm managed to achieve the best average
rank and accuracy on 5 datasets and against 10 state of the art classifiers. This result prove
the stability of the performances achieved by this algorithm, regardless of the environment
encountered. The results also show that it is able to accurately distinguish which observations
are easily classifiable, as the performance of the other learners drops on the observations where
the Droplets algorithm chose to abstain.

This means that the Droplets algorithm is well suited for tasks where wrong predictions
are costly and where accuracy is more important than coverage.
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Figure 6.2: Evolution of the percentage of unclassified observations (top) and evolution of the
accuracy of the top 4 classifiers on RBF1 (bottom)



Chapter 7

The problem of limited memory and
running time

7.1 Introduction

In the previous chapters, we have argued that the instance based structure was particularly
well suited to handle the problem of accurately predicting on a data stream subject to concept
drifts and we have proposed the Droplets algorithm as an instantiation of this idea. Data
streams however, can potentially be infinite and the observations might be streamed at a very
high frequency. Therefore, it is necessary for an instance based learning algorithm to be able
to deal with these 2 components.

In this chapter, we propose a new way to address the problems of constrained computer
memory and running time for this class of algorithms. We start by showing that both of
these problems can be resolved by constraining the number of instances kept into memory.
This, in turns, raises the question of selecting the observations that should be retained into
memory. We argue that, instead of using time as a criterion to select the observations which
will remain into memory, it is better to retain observations that minimize the differences in
outputted prediction and rule learned with the infinite memory algorithm. We call this the
Rule Preserving (RP) criterion.

This idea is implemented for the Droplets algorithm. Experimental results on 6 artificial
and semi-artificial datasets reproducing various types of drifts show that this strategy achieves
better results than a simple temporal window.

7.2 Framework

In this chapter, the considered framework (supervised classification on a stream of data subject
to concept drifts), goal (predict as accurately as possible the label yi associated with xi) and
performance metric (0-1 loss function) are identical to chapter 4 and thus won’t be presented
in details again.

90
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The difference however is that we now take into account 2 additional constraints: M which
is the maximum computer memory available to the algorithm (in Megabyte: MB) and S which
is the elapsed time between reception of 2 consecutive unlabeled observations (in seconds).

We also make the following assumptions:

1. M is known beforehand and is constant over time.

2. S is also known beforehand and also constant over time. This means that observations
are received at regular time intervals.

7.3 Constraining the number of observations in memory

If we assume that the computer memory used by an instance based algorithm is proportional to
the number of past observations stored into memory, constraining the memory consumption
of this algorithm can easily be achieved by constraining the number of instances kept into
memory.

Furthermore, the time complexity of an instance based learning algorithm is also a func-
tion of the number of instances kept into memory (as the algorithm has to loop over these
observations at each time step) and can also be constrained by setting an upper bound on the
maximum number of observations allowed into memory.

Thus, assuming that the space (in MB) required to store each observations can be known
beforehand (e.g. w MB for each instance in memory) and that the running time of the
algorithm can be determined as a function of the number of observations into memory (e.g.
z additional seconds per observations in memory), we can solve the two issues of limited
computer memory and running time by setting a parameter on the Maximum Number of
Observations (MNO) allowed in memory when the algorithm starts running:

MNO = Min

(⌊
M

w

⌋
,

⌊
S

z

⌋)
where b.c is the floor function.

Note: It is easy to see that the computer memory consumption of an instance base algo-
rithm should grow linearly with the number of observations kept into memory. However, it
might not be the same for the running time. The running time might, for instance, grow ex-
ponentially with the number of observations kept into memory. This doesn’t change anything
as, constraining the number of observations into memory will also set an upper bound on the
running time.

7.4 Selecting the observations kept into memory

7.4.1 Understanding the goal behind forgetting

When selecting the observations that should remain into memory it is important to distinguish
between two points:
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On the one hand, we have presented some of the main forgetting mechanisms in chapter
3. These mechanisms aim at deleting observations from memory in order to adapt to concept
drifts.

On the other hand, it is also possible to devise a forgetting mechanism which will also
choose which observations should be removed from memory, but with the goal of constraining
the memory consumption and the running time of the algorithm.

In this chapter, we aren’t concerned with the adaptation problem. We assume that the
instance based algorithm at hand is already capable of dealing with drifts and therefore capable
of selecting the observations that should and shouldn’t remain in memory in order to adapt to
concept changes. Therefore, under this assumption, all the observations left into memory are
deemed useful according to the algorithm and the goal is to select which of these observations
should be deleted in priority in order to meet with the constrains on computer memory and
running time.

7.4.2 Why a sliding window isn’t suitable

One of the most commonly used solution is to maintain the memory consumption (and running
time) of an instance based algorithm constant over time by using a rolling window. The window
holds the last p observations (with p a user defined parameter) and when a new observation
is released, it is added to the window and the oldest observation is deleted. The window can
be either of fixed or adaptive length [41].

Regardless of the case (fixed or adaptively sized window), the first underlying assumption
here is that time should be used as a criterion to decide whether an observation should be
deleted from memory or not. The second underlying assumption is that it is necessary to
keep contiguous observations. We have already discussed the shortfalls of these 2 assumptions
in Section 6.3.2.3 when the goal is to adapt to changes. These shortfalls remain valid in the
framework of forgetting to meet constrained memory and running time.

7.4.3 The Rule Preserving criterion

Instead, we propose a Rule Preserving (RP) criterion which aims at yielding predictions and
learned rule as close as possible to the predictions and learned rule that would have been
obtained if the algorithm had access to infinite memory.

Achieving this goal can be done by establishing a ranking of the observations saved in
memory and by removing in priority the redundant observations or the observations which
are unlikely to have a significant effect in the outputted prediction of the algorithm. Thus,
deleting an observation at the top of this ranking would significantly change the learned rule
and outputted prediction whereas an observation at the bottom of the ranking would have
little effect on the learned rule and outputted prediction. Consequently, we claim that these
observations should be deleted in priority.

We further claim that this strategy leads to better prediction performances than a simple
time stamp criterion. In the next section, this idea is tested for the Droplets algorithm which
was introduced in Chapter 6.
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7.5 The Droplets algorithm with memory management

In this section, we explain how the Droplets algorithm (presented in chapter 6) has been
modified using the principles described above, in order to deal with constrained memory and
running time on data streams subject to concept drifts.

7.5.1 Criteria used to rank the Droplets

As explained in the previous section, in order to maintain an upper bound on the running time
and computer memory consumption, it is necessary to establish a ranking of the observations
(Droplets) into memory. This ranking should favor the observations which are likely to have a
big impact on the rule learned and on the outputted predictions. In the case of the Droplets
algorithm, we have used 2 different criteria.

7.5.1.1 Volume not overlapped

The first criterion used to rank the Droplets is the Volume Not Overlapped (VNO) of each
hypersphere. This is the volume of the Droplet which is not shared with at least another
Droplet of the same class (recall that Droplets associated with different classes are not allowed
to overlap each other).

Because the outputted prediction will only depend on the area covered by the hyper-spheres
and, because there is no assumption on the distribution of the observations (i.e. in which part
of the map the next unlabeled observation will be received), the higher this value, the more
likely it is that a Droplet will be the only one used for the prediction.

Conversely, when this value is very small (e.g. V NO = 0), this means that all, or the
majority of, the volume covered by the Droplet is also covered by at least another Droplet of
the same class. Thus, if an observation is received in that part of the map, the Droplet can be
safely deleted as there is already another Droplet which will be able to output a prediction.
This is reason why Droplets with low VNO are deleted in priority.

Note: To compute the VNO, Monte Carlo simulations were used, randomly sampling P
points (where P is a fixed parameter) in the hypersphere of interest and assessing the fraction
of points that belong to at least another hypersphere.

7.5.1.2 Radius size

In some cases, there could be a tie in the ranking based on the VNO (in particular, for all
the Droplets that have V NO = 0) and a second criterion is required to select the Droplet
that should be deleted. The first criterion aimed at preserving the outputted prediction. The
goal of this second criterion is to preserve as much as possible the model learned after update
with the latest labeled observation. In other words: minimizes the change between the model
obtained with infinite memory and the model obtained with constrained memory.

The model obtained after update is a function of the latest observation received. Two cases
can arise when adding the latest Droplet to the map:
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1. Either the latest Droplet doesn’t overlap an existing Droplet with a conflicting class (and
in this case, there is no need to update the radius of the existing Droplets).

2. Either the latest Droplet overlaps one or more existing Droplets with a conflicting class
(and in this case, there is a need to update the radius of at least one of the existing
Droplets).

In the first case, the Droplet for which the deletion would minimize the difference in the model
learned after update is the Droplet with the smallest VNO.

In the second case, the size of the latest Droplet will be a function of the value of the
largest overlap it has with the other conflicting Droplets. For instance, if there are n Droplets
overlapping the latest one (received at time t+1), the size of the new Droplet will depend of
max (λ1, ..., λn) with:

λi = Rdefault +Ri − ‖xnormt+1 − xnormi ‖, ∀i ∈ {1, ..., n}

λi will increase if Ri increases and ‖xnormt+1 −xnormi ‖ decreases. Conversely, λi will decrease
if Ri decreases and ‖xnormt+1 − xnormi ‖ increases. Because we don’t make any assumption on
the parts of the map which are most likely to received the next observations, the distance
‖xnormt+1 −xnormi ‖ can’t be used as a criterion to decide which λi is most likely to end up having
the highest value.

Therefore, it is assumed that Droplets with a large radius are more likely to end up having
a larger overlap with the future Droplets than Droplets with a small radius. As a consequence,
Droplets with small radius can be deleted priority as they are less likely to have an impact on
the size of future Droplets and thus on the rule learned after update of the map.

This leads to pick the radius as a second criterion for deletion (in case of tie for VNO) and
delete in priority the Droplets which have a small radius.

7.5.2 The algorithm

The full Droplets algorithm equipped with the RP criterion is detailed in Algorithm 7.1. The
differences with the base Droplets algorithm presented in Algorithm 6.3 are highlighted in red.
We now go through the memory management algorithm step by step:

When a new observation is received, the algorithm first checks whether the MNO is reached.
If this is the case, it gets the index in the map of the observation which is at the bottom of
the ranking (in Algorithm 7.1, this index is u) and remove this Droplet from memory.

A new unlabeled observation xi is then received and the process follows the same steps as
for the basic Droplets algorithm.

Then, once the map has been updated, the algorithm updates the ranking of all Droplets
in the map.

A video comparing the models learned with the 3 types (infinite memory, RP criterion and
simple time window) of Droplets algorithms can be found here1.

1https://www.youtube.com/watch?v=_uLhRX9FXxc



CHAPTER 7. THE PROBLEM OF LIMITED MEMORY AND RUNNING TIME 95

Algorithm 7.1 The Droplets algorithm with Rule Preserving criterion.
Inputs:
Rdefault: parameter setting the default value of the radius
N : size of the initializing set
ε: an arbitrarily small positive number
MNO : parameter setting the maximum number of observations allowed in memory

−→
D ← Compute normalization constants (x1, ..., xN )
map0 ← ∅ //Initialize the map to empty
ranking0 ← ∅ //Initiliaze the ranking to empty
Foreach: xi with i ∈ {1, 2, ...}
n← Get number observations in memory (mapi−1)
If n = MNO Then
u← Get index Droplet at the bottom of the ranking (rankingi−1,mapi−1)
mapi−1 ← Remove Droplet from map (mapi−1, Criteria : index = u)
End If
xnormi ← Normalize observation

(
xi,
−→
D
)

// Prediction step
If i > N
ŷi ← Predict (mapi−1, x

norm
i ) // Algorithm 6.2

End If
// Map update
yi ← True Label of xi
indexes← Get Overlapped Droplets with conflicting labels (mapi−1, x

norm
i , yi)

mapi ← Update radii (mapi−1, indexes,Rdefault, ε) // Algorithm 6.1
rankingi ← Update Ranking(Rankingi−1,mapi)
End Foreach
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7.5.3 Temporal complexity

The temporal complexity of the RP is O
(
C. (MNO)2

)
with C the chosen number of Monte

Carlo simulations and MNO the maximum number of observations allowed in memory. This
ensures that the running time of the algorithm will be constrained for fixed values of MNO
and C.

7.6 Experiments

In this section, we lay down the experimental protocol and experimentally show that the RP
is better than a simple temporal window at replicating the predictions of the infinite memory
Droplets algorithm. We also show that the performances achieved by the RP are superior to
the ones of the simple temporal window.

7.6.1 Experimental protocol

In order to compare the performances achieved by the RP criterion against the commonly
used temporal window, we have carried out two sets of experiments on 6 artificial and semi-
artificial datasets2 including 1000 observations and reproducing different types of drifts (the
drifts are evenly distributed on the datasets). The descriptions of the datasets RBF, Rotating
Hyperplane and Temperatures can be found in [74] and a description of SEA is given in [94].

The default radius of the Droplets for all the experiments was set to 0.1 whereas the number
of Monte Carlo simulations was set to C = 1000. In each case, the first 100 observations were
kept for initialization purpose and the performance was assessed on the remain observations.

Three versions of the Droplets were implemented. Their only difference is the way they
manage the Droplets in memory. The first version is based on a Temporal Window (TW)
that adds the latest Droplet to the memory and continuously drops the oldest Droplet once
the memory is full whereas the second version uses the RP criterion to decide which Droplet
should be deleted. Finally, the third version of the Droplet is being given access to infinite
memory.

We chose to compare the Droplets algorithm against itself in order to make sure that any
difference in the achieved performances would effectively come from the the chosen memory
management procedure.

7.6.2 Results

7.6.2.1 The RP criterion outperforms a temporal window

In the first set of experiments, we compared the differences between the achieved performances
of the RP and the TW on the 6 datasets.

Because the Droplets allow to abstain from prediction, we monitored the difference in the
percentage of correct predictions (accuracy) Pacc as well as the difference in the percentage

2The datasets used can be downloaded here: http://webia.lip6.fr/~loeffel/ESANN2016/



CHAPTER 7. THE PROBLEM OF LIMITED MEMORY AND RUNNING TIME 97

of unclassified observations Punc of the 2 algorithms. Therefore, for each dataset, the values
displayed on the y-axis of Figure 7.1 are equal to:

Pacc (RP )− Pacc (TW )

and

Punc (TW )− Punc (RP )

The values displayed on the x-axis indicate the maximum number of observations (MNO)
that were allowed in memory. For both charts, a positive number indicates that the RP out-
performs the temporal window.

The results indicate that globally the RP has a better accuracy and a lower percentage of
unclassified observations than a simple temporal window, regardless of the dataset, the type
(or absence) of drift and the number of observations allowed in memory.

The differences in performances can be as significant as +15% in correctly classified ob-
servations and -16% of unclassified observations for a MNO of 40. As the MNO increases, the
coverage of both methods converges to a point where there is not much difference (less than
2%) between them but where the RP still retains an hedge over the temporal window.

7.6.2.2 The RP replicates well the outputs of the Droplets with infinite memory

The second set of experiments was aimed at assessing the ability of the RP to replicate the
predictions obtained by the infinite memory algorithm.

At each time step, the prediction obtained with the infinite memory Droplets was compared
to the prediction obtained with the RP. These predictions were then classified into 4 categories:
exactly the same output, prediction (for the infinite memory Droplets) to unclassified (for
the RP), unclassified to prediction and two different predictions. For comparison purposes,
we performed the same experiment for the Droplets equipped with the TW which was also
compared to the infinite memory algorithm.

The results for the SEA dataset with 20 drifts are shown in Figure 7.2. For a given MNO
(shown on the x-axis), the left bar represents the proportion of each of the 4 types of outcome
achieved by the RP whereas the right bar represents the proportion of outcome achieved by
the TW. The results on the 5 remaining datasets were similar but have not been reproduced
here.

The results indicate that despite the constrain on memory usage, the predictions outputted
by the RP are for the vast majority, exactly the same as the ones obtained with infinite memory.
Even when there are as little as 20 observations allowed in memory, the RP managed to
replicate the prediction of the infinite memory Droplets 58% of the time.

They also show that the RP is consistently better at replicating the predictions of the
infinite memory Droplets than the TW, regardless of the MNO.
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Figure 7.1: Difference in performances: Temporal Window vs Rule Preserving criterion
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Figure 7.2: Outputs by categories of the RP (left) vs TW (right) on the SEA dataset with 20
abrupt drifts

Finally, in the cases where the outputted prediction of the RP was different than the one
obtained with infinite memory, the majority of these predictions ended up being unclassified
by the RP which is the safest outcome when lacking information.

7.7 Conclusion

A successful instance based algorithm must be able to keep its memory consumption and
running time constrained while at the same time retaining good prediction performances.

In this chapter, we have argued that the issues of limited computer memory and running
time could be overcame by limiting the number of observations that an instance based learning
algorithm was allowed to keep into memory. Under the assumption that the instance based
algorithm at hand is already capable of adapting to concept changes, we have proposed a new
criterion (the Rule Preserving criterion) to select the observations that would be allowed to
remain into memory. This criterion aims at minimizing the differences between the model
learned with infinite memory and the model learned with constrained memory.

We have applied this criterion to the particular case of the Droplets algorithm by establish-
ing a ranking of the Droplets saved into memory. The ranking was based on to 2 criteria which
assessed whether the deletion of a particular Droplet would produce a significant difference in
the model learned with infinite memory or not and whether deleting this particular Droplet
would have an effect on the predictions given by the algorithm.

The results achieved on several datasets reproducing different types of drifts, indicate that
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the RP criterion obtains better prediction performances than a temporal window which selects
the observations based on their time stamp. They also indicate that the RP criterion is capable
of replicating very well the predictions of the infinite memory algorithm, even under extreme
memory constrains.



Chapter 8

Conclusion

8.1 Considered problem and challenges

Machine learning algorithms have proved to be very useful when it comes to automatically
extract informations from large datasets. However, not all machine learning algorithms are
suited to handle data streams. Indeed, classic machine learning algorithms were created to
learn a static rule out of a dataset, fully available at the training step. This type of algorithm
is no longer suited for data streams as a full dataset is not available during the training step
and that the observations are received sequentially. This raises the need of using an algorithm
which can maintain a model up to date with the observations received so far.

Another issue is that it can no longer be assumed that the observed data are generated
from an unique hidden probability distribution (the concept). Indeed, the observed values
generated by a data stream often represent a snapshot of the characteristics of an object at a
given time. As the object might evolve over time, so are its characteristics. For instance, the
electrocardiogram monitoring the cardiac activity of a person, will behave differently according
to the current activity of that person. Therefore, a suitable algorithm must be capable of
adapting to these concept changes.

Finally, the chosen learning algorithm must also deal with some constraints such as the
available amount of computer memory or the frequency at which the data are streamed. On
the one hand, it must ensure that its memory consumption remains within the allowed limits
(which is not necessarily straightforward when the amount of data to process is potentially
infinite) and on the other hand it must also ensure that its running time is smaller than the
time it takes to receive two consecutive observations from the stream (which can also prove
very challenging when the data are streamed at a very high frequency).

To sum up, the considered problem in this thesis is supervised learning (in both classi-
fication and regression settings) on a data stream subject to concepts drifts and under the
constraints of limited computer memory and running time. The goal is to predict as accu-
rately as possible the labels associated with the received observations. We didn’t make any
assumption on the type of the drifts or about the nature of the concepts that could be expected.
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8.2 Contributions

In order to deal with these challenges and under the previously stated framework, we have
claimed that a successful learning algorithm had to combine several properties: it must be
capable to learn and adapt continuously, its prediction model should not make any assumption
on the nature of the concept it is trying to learn, its adaptation procedure should be capable
to deal with any kind of drift, it should be allowed to abstain from prediction when necessary
and its running time and memory consumption should be constrained.

We now discuss how we obtained each of these properties.

8.2.1 On-line architecture for continuous learning and adaptation

On-line learning algorithms are the obvious choice to handle data streams and have already
been widely used in the literature for this purpose. Because of their structure, they can contin-
uously update their learned model by always making use of the latest data. This mechanism
ensures that when the concept remains stable, the algorithm will always fine tune its learned
model. Conversely, when the concept drifts, this very same adaptation mechanism will allow
the algorithm to adapt to the changes.

All the proposed algorithms in this PhD thesis are on-line (DEA in chapter 4, the abstaining
mechanism in chapter 5, the Droplets in chapter 6 and the strategy for memory management
in chapter 7). The major challenges for an on-line algorithm aiming a predicting in this
environment are to be flexible enough to learn a wide range of concepts and to define an
adaptation / forgetting mechanism which would be suited for a wide range of drifts. We now
explain how we solved these issues by taking advantage of the instance based structure.

8.2.2 The benefits of the instance based structure

The one major contribution of this thesis is our claim that the instance based (IB) structure
has some properties which make it extremely well suited to handle the issue of data streams
with drifting concepts. We now go through some of the main properties.

8.2.2.1 Flexibility to learn a wide range of concepts

IB algorithms make very little assumptions about the nature of the concept they are trying
to learn. This grants them a great flexibility which make them likely to be able to learn
from a wide range of concepts. This is in contrast with the model based architecture which
often make prior assumptions on the nature of the concept. When wrong, these assumptions
can hinder proper learning of the concept at hand. In our case, we didn’t assume any prior
knowledge on the expected evolution of the concept over time and consequently this flexibility
proved to be a key factor in the success of DEA and the Droplets algorithm. This point has
been demonstrated through the various experiments conducted in chapters 4 and 6 where the
obtained results showed that the proposed IB algorithms were capable of regularly ranking
amongst the top performing algorithms against several (8 algorithms for DEA and 9 algorithms
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for the Droplets) state of the art drift handling algorithms and on a wide range of datasets
(25 datasets for DEA and 5 datasets for the Droplets), with very different characteristics .

8.2.2.2 Stored observations bring valuable meta-informations

Storing some of the past observations into memory can bring valuable meta-informations
which can be used by a learning algorithm to enhance its performances. Examples of how
these informations could be used were presented with the Droplet Ensemble Algorithm (DEA,
chapter 4) and the Droplets algorithm (chapter 6).

DEA is an ensemble learning algorithm relying on the IB structure which uses past obser-
vations to keep track of the area of expertise of its base learners on the feature space. This
information is used to select the subset of its base learners which is the best suited to predict
on the latest observation received.

In the case of the Droplets algorithm, the past observations were used to keep track of the
regions of the feature space which have been explored and to assess whether the algorithm
could confidently predict or not (this point is detailed further in the next subsection) for a
given unlabeled observation.

8.2.2.3 Powerful adaptation mechanism

Adaptation without explicit detection: The IB structure also allows a great deal of
flexibility on the choice of the criterion used to decide which observations will be allowed to
remain into memory in order to maintain the model in line with the current concept (e.g.
time, spatial relevance, probability distribution, ...). These criteria can be used independently
or combined. Amongst these criteria, we chose to rely on hard evidences of obsolescence of
past observations to trigger the forgetting mechanism.

As explained in chapters 4 and 6, a past observation was deemed out of date if a newest
observation with similar characteristics (i.e. with similar observed features values) proved it
wrong (i.e. has a label which conflicts with the label of the old observation). Two consequences
of this are that the model is constantly updated with the latest observations (which fits our
on-line requirement) and that it isn’t necessary to detect concept drifts anymore in order to
trigger the update of the model.

As we have argued in Section 6.3.2.1, detecting concept drifts can prove to be a very
difficult task in the absence of prior information about the stream. Indeed it might not be
easy to accurately spot the metric that must be tracked (e.g. should a performance metric or
a statistic over the observations be tracked ?) and to choose the best action when an alarm
is triggered from this metric (e.g. should the whole model be discarded or just some parts of
it?). Furthermore, setting a threshold above which an alarm will be triggered can also prove
challenging as it adds another parameter to the algorithm which will most likely need to be
constantly fined tuned and will further complicate the model.

Therefore, we argued that it is easier to perform adaptation without explicit detection.
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Cautious adaptation to drifts: Another consequence of this update mechanism is that all
the updates of the model will be local (i.e. they will only happen around the latest observation)
and therefore, that the adaptation process will always be gradual, regardless of the type of
drifts. It could be argued that this strategy might not always be the best, especially when the
whole model becomes outdated after an abrupt drift. However:

1. This adaptation procedure ensures that only the parts of the model which must be
updated are effectively updated. For instance, when the concept drifts locally, this for-
getting mechanism allows for a bespoke update of the local parts of the model which
are outdated without loosing the valuable informations accumulated elsewhere. There-
fore, by avoiding to throw away the accumulated knowledge, the model is less prone to
catastrophic forgetting (when all the accumulated knowledge is deleted by mistake).

2. It is impossible to know beforehand whether a drift will make the whole former model
out of date or not. This would require prior informations on the type of expected drifts
which we didn’t allow. Because we don’t know which type of updates will be required
for the whole model, we use a “safe” updating mechanism which rely on hard evidence
of obsolescence.

This cautious approach allowed the IB methods developed in this thesis to achieve the best
average accuracy and average rank against other state of the art algorithms and on datasets
reproducing a wide range of drifts as shown by the results achieved in tables 2 and 6.1. These
results demonstrate the capabilities of this adaptation mechanism (both DEA and Droplets
algorithms share this characteristic) to perform consistently well, regardless of the nature of
the drifts or the characteristics of the concept at hand.

8.2.2.4 Simple solution to running time and memory constraints

The IB structure offers a simple and natural solution to the problems of constraining the com-
puter memory consumption and running time of the algorithm. This is achieved by limiting
the maximum number of observations allowed into memory. In order to decide which observa-
tions should be deleted to meet these constrains and under the assumption that the learning
algorithm at hand was capable of dealing with drifts, we have proposed in chapter 7 a criterion
which aims at replicating the model learned with infinite memory and showed that it achieved
better performances than a simple time stamp criterion. This is mainly the case because the
time stamp criterion doesn’t get rid of redundant observations which unnecessarily clutter the
memory.

8.2.3 Handling uncertainties by abstaining

Another major contribution of this thesis is to stress the importance of allowing the learning
algorithm to abstain from prediction in this framework. This is because the drifts can generate
a lot of uncertainties and at times, an algorithm might lack the necessary information to
accurately predict. In these cases, instead of trying to output a prediction at all cost, we have
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showed that it might be better to automatically disconnect the algorithm by allowing it to
abstain from prediction. This would ensure that more data are collected before a prediction
can be given and could avoid costly mistakes. The challenge here was to accurately spot the
observations which might have lead to a wrong prediction. We studied the benefits of this
approach in two cases:

In chapter 5, we have studied the regression setting with a constrain on the expected
precision of the outputted predictions. We have shown that any state of the art algorithm
capable of learning on a drifting data stream could be allowed to abstain if it is given a set of
reliability estimators. Each estimator was assessing a particular aspect of the reliability that
can be given to a prediction. Their estimates were then combined with a simple majority vote.

In chapter 6 we have studied the general classification setting. We have made use of the
information brought by the instance based structure in order to automatically disconnect the
Droplets algorithm during periods of time when information where judged insufficient. This
would happen in two cases: either when a new part of the feature space would be explored,
either when an observation would be received in a part of the feature space where similar past
observations with conflicting labels would have been received.

In both cases, the experiments have shown that these 2 strategies were very effective at
filtering the tricky observations and therefore that abstaining could significantly improve the
prediction performances of the learning algorithms.

8.3 Limitations and perspectives

We now go through some of the identified limits and perspectives of our work.

8.3.1 Instance Based structure

8.3.1.1 Slow learner

IB algorithms require a lot of observations in order to accurately learn the concept which can
make them slow learners in some scenarios. For instance, when the range of values taken by
the features is [−∞,+∞], the algorithm might never be able to accurately learn the concept.
Furthermore, in the particular case of highly dimensional input space, they are likely to suffer
from the “curse of dimensionality” as the number of observations necessary to accurately
learn the concept will exponentially grow with the number of dimensions. A consequence of
this, is that they tend to be sensible to irrelevant attributes which unnecessarily increase the
dimensionality.

This is in contrast with model based methods which can speed up the learning process
by making assumptions about the nature of the concept. When these assumptions prove to
be close to the reality, these algorithms will be much faster to learn the concept, will use less
computer memory and will also most likely obtain better prediction performances.

In order to deal with these shortfalls, it could be interesting to extend some classical
frameworks such as dimensionality reduction or feature selection to the setting of data streams
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subject to concept drifts. For instance, in the case of feature selection, this would mean a
continuous re-assessment of the selected features as some features might become irrelevant
over time.

8.3.1.2 Trade-off between running time and memory consumption

IB algorithms tend to be computationally expensive during the prediction step as they are
often required to go through all the observations saved into memory in order to create a local
model. When the data are streamed at a high frequency, this could prove to be an issue as
they might be too slow. We have seen that it was possible to speed up this process by limit-
ing the number of observations saved into memory. The challenge here is that, the trade-off
between running time and memory consumption will impact the predictions performances of
the algorithm. Indeed, in general (provided that the algorithm is capable of distinguishing
the observations which should be retained into memory) the more observations allowed into
memory, the better the prediction performances.

The idea of aggregating informations contained into similar observations through proto-
types seems promising (Kuncheva [67]). In particular, Losing et al. [75] proposed to cluster
similar observations into a long term memory. It could be interesting to work further in this
direction, by maintaining an ensemble of prototypes along with some observations and to
automatically recognize the regions of the feature space where the observations could be ag-
gregated and the ones where it is necessary to keep instances. This would lead to the creation
of an hybrid algorithm merging the characteristics of the instance based structure with the
model based approach.

8.3.1.3 Sensitive to the distance / similarity function used

IB algorithms are also known for being sensitive to the similarity / distance function used.
Throughout this thesis, we have sticked to the Euclidean distance but it is unclear whether a
single similarity function would remain optimal over time in such an evolving framework. In
future works, it could be interesting to compare the evolution in the performances achieved
by different functions over time to see whether this is the case or not.

Encoding categorical features to numerical values is also known to be a problem for IB
algorithms as it isn’t always clear how the similarity between 2 different values should be
assessed.

8.3.1.4 Lack of detection mechanism not always optimal

As mentioned earlier, the forgetting mechanism used in this thesis (forget observations which
have been proved wrong) will always gradually forget past observations. This mechanism will
be slower than a method using a detector as soon as this detector is tracking the right metric
(and taking the best suited action once an alarm is triggered) or if there is prior information
about the expected type of drifts.
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For instance, in the case of an abrupt drift which would make the whole model out of date,
learning the new concept could be significantly speed up by forgetting the old model at once.
This could also reduce the error rate during the short period of time after the drift has occurred.

The above limit makes it clear that when the goal is to predict on a data stream subject to
concept drifts, the most important step is to spend some time understanding the characteristics
of the data stream as well as the type of drifts which can be expected. If these informations
can be extracted, it will become much easier to decide which algorithm’s structure will be the
best suited. It could be interesting to learn to automatically estimate the type of drifts in real
time and dynamically select the most appropriate adaptation strategy.

This would mean using a two steps learning algorithm. The first step would be to track
several metrics at the same time (e.g. the error rate, the distribution of the observations, ...)
and create a learning algorithm which would associate a particular type of drift to particular
values of these metrics. The second step would be to create a second learning algorithm which
would learn the best adaptation method (e.g. local update, forget the old model and retrain
from scratch, ...) for the identified type of drift.

8.3.2 Cost of abstaining sometimes unclear

When it comes to decide whether abstaining should be considered or not for a given task,
the answer will depend on the costs which are associated with abstaining, a good and a bad
prediction. One issue is that these costs might not always be easy to know beforehand and
even when they are known, they might change over time. When this is the case, it is unclear
whether abstention should be considered or not.

8.3.3 Other future works

8.3.3.1 Use the abstention rate of the droplets as a drift detection mechanism

As shown in figure 6.2, when an abrupt drift occurs, the percentage of observations unclassified
by the Droplets algorithm soar. It could be interesting to conduct further research to see
whether this indicator could be used as a drift detection mechanism or not. The key point
in this case would be to make use of the available prior information that we have. Indeed
there are only 2 scenarios where the percentage of unclassified observations can increase for
the Droplets algorithm:

1. Either a new part of the feature space is being explored. In this case, it could be
interesting to see if it’s worth learning a new model locally (not necessarily an instance
based one) or to modify the algorithm’s parameters to temporarily increase its learning
speed.

2. Either a part of the feature space which has already been explored received conflicting
informations. In this case, it could be worth speeding up the forgetting mechanism
locally and delay further the prediction mechanism in this area in order to accumulate
more informations.
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8.3.3.2 Automatically select a proper parameter value

One of the most interesting and challenging issue which hasn’t been covered in this PhD thesis
is the problem of setting proper parameter’s values for the adaptive models. Throughout this
thesis we have argued that there would be no point in doing some prior optimization of these
values as a given parameter value would only be suitable at a given time and for a given concept.
However it is very unlikely that a single parameter value would be optimal throughout the
lifespan of the stream.

It could be interesting to work further on the problem dynamically setting a parameter’s
value. This would probably involve a meta-learning algorithm which would be in charge of
continuously fine tunning the parameters value.

8.3.3.3 Adaptive machine learning for quantitative trading

Finally, all these researches on adaptive machine learning algorithms could be applied to the
quantitative trading universe. Few data streams are more challenging for a learning algorithm
than the ones generated by the prices of assets on financial markets. They are indeed very
noisy and subject to many different types of unexpected drifts. Creating an adaptive algorithm
able to forecast the future value associated with the price of an asset would be an interesting
challenge and a good way to test how these methods react in the most extreme real world
scenarios.



Chapter 9

Appendix

9.1 Droplets for the regression setting

Here we briefly present how the Droplets algorithm could be extended to the regression setting.

The Droplets algorithm as it was presented in chapter 6 is given in Algorithm 9.1:
In order to comply with the regression setting, a few changes are necessary:

The Predict function could be modified to become a simple average of the values associated
with the n Droplets the latest observation fell into:

ŷi =

n∑
j=1

Cj

n

with Cj the value associated with the jth Droplet and ŷi the estimated label of the latest
observation.

The Get Overlapped Droplets with conflicting labels function should be modified to return
all the overlapped droplets with a label value which is different from the real label value of
the latest observation yi.

Finally, the Update Radii function should be modified as shown in Algorithm 9.2. A few
explanations are given thereafter:

Base computes the highest difference in absolute terms of all the values associated with
the labels of the overlapped Droplets.

Dissimilarityk ∈ [0, 1] computes how much difference there is between the labels of Droplet
k and Droplet i (the latest Droplet) relative to the local base. The higher the number the
more Droplets k and i are dissimilar.

∆k
2 is the value that will be subtracted of the radius of Droplet k. In particular, when

Dissimilarityk = 0, we have ∆k = 0 which is equal to the value it would have taken in the
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Algorithm 9.1 Droplets for the classification setting
Inputs:
Rdefault: parameter setting the default value of the radius
N : size of the initializing set
ε: an arbitrarily small positive number

−→
D ← Compute normalization constants (x1, ..., xN )
map0 ← ∅ //Initialize the map to empty
Foreach: xi with i ∈ {1, 2, ...}
xnormi ← Normalize observation

(
xi,
−→
D
)

// Prediction step
If i > N
ŷi ← Predict (mapi−1, x

norm
i )

End If
// Map update
yi ← True Label of xi
indexes← Get Overlapped Droplets with conflicting labels (mapi−1, x

norm
i , yi)

mapi ← Update radii (mapi−1, indexes,Rdefault, ε) // Algorithm 6.1
End Foreach

Algorithm 9.2 Update of the radii sizes
Inputs:
indexes: the identifiers of the Droplets that should be updated in the map
mapi−1: holds all the Droplets saved into memory at the previous time step
ε : an arbitrarily small positive number
Rdefault: parameter setting the default value of the radius

Base = max {C1, ..., Cn} − min {C1, ..., Cn} //∀j ∈ {1, ..., n} , Cj ∈ indexes and the set
{C1, ..., Cn} includes Ci the value associated with the latest observation.
Foreach:k ∈ indexes
Dissimilarityk = |Ck−Ci|

Base

∆k ←
[
Rk+Rdefault−‖xnormk −xnormi ‖

2 + ε
]
.Dissimilarityk

Rk ← Rk − ∆k
2

End Foreach
Ri ← Rdefault
mapi−1 ← Add Droplet to map (xnormi , yi, Ri)
mapi ← Remove unnecessary Droplets from map (mapi−1, Criteria : R ≤ 0)
Return mapi
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classification setting if both classes where the same and conversely when Dissimilarityk = 1,
we have ∆k equal to the value it would have had in the classification setting if the classes
where different.
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